AN UNSPLIT 3D UPWIND METHOD FOR HYPERBOLIC CONSERVATION-LAWS

被引:111
作者
SALTZMAN, J
机构
[1] Los Alamos National Laboratory, Los Alamos
关键词
D O I
10.1006/jcph.1994.1184
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An unsplit upwind method for solving hyperbolic conservation laws in three dimensions is developed. This paper derives the algorithm by generalizing a two-dimensional advection algorithm of Van Leer and Colella to three dimensions and then making appropriate modifications. The method is implemented using the equations of gas dynamics. Several test problems are computed to both verify and display the behavior of the method. These test problems include a 1D blast wave, a 2D shock reflection off a 30-degrees ramp, and a 3D astrophysical jet. (C) 1994 Academic Press, Inc.
引用
收藏
页码:153 / 168
页数:16
相关论文
共 24 条
[1]   3-DIMENSIONAL STRUCTURE AND DYNAMICS OF A SUPERSONIC JET [J].
ARNOLD, CN ;
ARNETT, WD .
ASTROPHYSICAL JOURNAL, 1986, 305 (02) :L57-L60
[2]  
ARNOLD CN, 1985, THESIS U MICHIGAN
[3]   HIGHER-ORDER GODUNOV METHODS FOR GENERAL SYSTEMS OF HYPERBOLIC CONSERVATION-LAWS [J].
BELL, JB ;
COLELLA, P ;
TRANGENSTEIN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (02) :362-397
[4]   MULTIDIMENSIONAL UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS [J].
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 87 (01) :171-200
[5]   THE PIECEWISE PARABOLIC METHOD (PPM) FOR GAS-DYNAMICAL SIMULATIONS [J].
COLELLA, P ;
WOODWARD, PR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (01) :174-201
[6]   EFFICIENT SOLUTION ALGORITHMS FOR THE RIEMANN PROBLEM FOR REAL GASES [J].
COLELLA, P ;
GLAZ, HM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (02) :264-289
[7]  
COLELLA P, 1989, COMMUNICATION
[8]   ON THE SOLUTION OF NONLINEAR HYPERBOLIC DIFFERENTIAL EQUATIONS BY FINITE DIFFERENCES [J].
COURANT, R ;
ISAACSON, E ;
REES, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1952, 5 (03) :243-255
[9]   A GENERAL, NON-ITERATIVE RIEMANN SOLVER FOR GODUNOV METHOD [J].
DUKOWICZ, JK .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 61 (01) :119-137
[10]  
Friedrichs K., 1976, SUPERSONIC FLOW SHOC