RECENT DEVELOPMENTS IN THE THEORY OF FINITE-ELEMENT APPROXIMATIONS OF BOUNDARY-VALUE PROBLEMS IN NON-LINEAR ELASTICITY

被引:4
作者
ODEN, JT
机构
[1] The University of Texas at Austin, Austin, TX
关键词
D O I
10.1016/0045-7825(79)90087-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
[No abstract available]
引用
收藏
页码:183 / 202
页数:20
相关论文
共 11 条
[1]  
Aubin, Evaluation des erreurs de troncature des approximations des espaces de Sobolev, J. Math. Anal. Appl., 21, pp. 356-368, (1968)
[2]  
Ciarlet, The finite element method for elliptic problems, (1978)
[3]  
Knowles, Sternberg, On ellipticity of the equations of nonlinear elastostatics for a special material, Journal of Elasticity, 5, pp. 341-361, (1976)
[4]  
Knowles, Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain, Archive for Rational Mechanics and Analysis, 63, pp. 321-336, (1977)
[5]  
Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math., 11, pp. 346-348, (1968)
[6]  
Oden, Applied functional analysis, (1979)
[7]  
Oden, Del Roure, A theory of finite element approximations for a class of nonlinear two-point boundary value problems in finite elasticity, Int. J. Eng. Sci., 15, pp. 671-692, (1977)
[8]  
Oden, Reddy, Finite element approximations of a class of highly nonlinear boundary value problems in nonlinear elasticity, I. Qualitative Analysis, II. Approximation Theory, J. Numer. Func. Anal. Opt., 1, pp. 000-000, (1978)
[9]  
Oden, Reddy, Finite element approximation of a two-point boundary-value problem in nonlinear elasticity, J. Elasticity, 7, pp. 243-263, (1977)
[10]  
Oden, Reddy, An introduction to the mathematical theory of finite elements, (1976)