ONE-TIME RELATIVISTIC EQUATION AND ITS APPLICATION TO NUCLEON-NUCLEON-SCATTERING

被引:9
作者
ZHU, XQ
GOURISHANKAR, R
KHANNA, FC
LEUNG, GY
MOBED, N
机构
[1] SE MASSACHUSETTS UNIV, DEPT PHYS, N DARTMOUTH, MA 02747 USA
[2] UNIV REGINA, DEPT PHYS & ASTRON, REGINA S4S 0A2, SASKATCHEWAN, CANADA
[3] TRIUMF, VANCOUVER V6T 2A3, BC, CANADA
来源
PHYSICAL REVIEW C | 1992年 / 45卷 / 03期
关键词
D O I
10.1103/PhysRevC.45.959
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A three-dimensional relativistic equation with real time variables is derived from the Bethe-Salpeter equation. The kernel is uniquely determined by the Bethe-Salpeter kernel through an infinite series. The one-time kernel in the momentum representation is represented by a superposition of Feynman amplitudes with the particle 1 or the antiparticle 2 being on the mass shell. The numerical analysis shows that the one-time equation is equivalent to the Gross equation in the N-N scattering case.
引用
收藏
页码:959 / 973
页数:15
相关论文
共 44 条
[1]   STATIC PROPERTIES OF NUCLEONS IN THE SKYRME MODEL [J].
ADKINS, GS ;
NAPPI, CR ;
WITTEN, E .
NUCLEAR PHYSICS B, 1983, 228 (03) :552-566
[2]  
[Anonymous], 1964, RELATIVISTIC QUANTUM
[3]   NUCLEON-NUCLEON PARTIAL-WAVE ANALYSIS TO 1 GEV [J].
ARNDT, RA ;
ROPER, LD ;
BRYAN, RA ;
CLARK, RB ;
VERWEST, BJ ;
SIGNELL, P .
PHYSICAL REVIEW D, 1983, 28 (01) :97-122
[4]   LINEAR INTEGRAL EQUATIONS FOR RELATIVISTIC MULTICHANNEL SCATTERING [J].
BLANKENBECLER, R ;
SUGAR, R .
PHYSICAL REVIEW, 1966, 142 (04) :1051-+
[5]   SOLUTIONS OF A BETHE-SALPETER EQUATION [J].
CUTKOSKY, RE .
PHYSICAL REVIEW, 1954, 96 (04) :1135-1141
[6]   FORMS OF RELATIVISTIC DYNAMICS [J].
DIRAC, PAM .
REVIEWS OF MODERN PHYSICS, 1949, 21 (03) :392-399
[7]  
Erkelenz K., 1974, Physics Reports. Physics Letters Section C, V13c, P191, DOI 10.1016/0370-1573(74)90008-8
[8]   INTRODUCTION TO N-QUANTUM APPROXIMATION FOR BOUND STATES - DEUTERON IN PSEUDOSCALAR-MESON THEORY [J].
GREENBERG, OW ;
GENOLIO, RJ .
PHYSICAL REVIEW, 1966, 150 (04) :1070-+
[9]  
GROSS F, 1990, PHYS REV C, V41, pR1909
[10]   RELATIVISTIC FEW-BODY PROBLEM .1. 2-BODY EQUATIONS [J].
GROSS, F .
PHYSICAL REVIEW C, 1982, 26 (05) :2203-2225