FRACTAL DECOMPOSITION OF EXPONENTIAL OPERATORS WITH APPLICATIONS TO MANY-BODY THEORIES AND MONTE-CARLO SIMULATIONS

被引:662
作者
SUZUKI, M
机构
[1] Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo
关键词
D O I
10.1016/0375-9601(90)90962-N
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new systematic scheme of decomposition of exponential operators is presented, namely exp [x(A+B)]=Sm(x)+O(xm+1) for any positive integer m, where Sm(x)=et1Aet2Bet3Aet4B...etMA. A general scheme of construction of {tj} is given explicitly. The decomposition exp[x(A+B)]=[Sm(x/n)]n+O(xm+1/nm) yields a new efficient approach to quantum Monte Carlo simulations. © 1990.
引用
收藏
页码:319 / 323
页数:5
相关论文
共 5 条
[1]  
[Anonymous], 1987, QUANTUM MONTE CARLO
[2]  
BANDRAUK A, COMMUNICATION
[3]  
Mandelbrot B. B., 1982, FRACTAL GEOMETRY NAT, P1
[5]   FINITE-SIZE SCALING FOR TRANSIENT SIMILARITY AND FRACTALS [J].
SUZUKI, M .
PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (06) :1397-1400