MIN-CUT CLUSTERING

被引:149
作者
JOHNSON, EL [1 ]
MEHROTRA, A [1 ]
NEMHAUSER, GL [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH IND & SYST ENGN,ATLANTA,GA 30332
关键词
CLUSTERING; DECOMPOSITION; COLUMN GENERATION; SUBPROBLEM OPTIMIZATION; VALID INEQUALITY; COMPILER DESIGN;
D O I
10.1007/BF01585164
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe a decomposition framework and a column generation scheme for solving a min-cut clustering problem. The subproblem to generate additional columns is itself an NP-hard mixed integer programming problem. We discuss strong valid inequalities for the subproblem and describe some efficient solution strategies. Computational results on compiler construction problems are reported.
引用
收藏
页码:133 / 151
页数:19
相关论文
共 16 条
[1]   ON THE CUT POLYTOPE [J].
BARAHONA, F ;
MAHJOUB, AR .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :157-173
[2]  
CHOPRA S, 1991, FACETS K PARTITION P
[3]  
CHOPRA S, 1990, PARTITION PROBLEM
[4]  
CHOPRA S, 1991, GRAPH PARTITIONING P
[5]   THE EQUIPARTITION POLYTOPE .2. VALID INEQUALITIES AND FACETS [J].
CONFORTI, M ;
RAO, MR ;
SASSANO, A .
MATHEMATICAL PROGRAMMING, 1990, 49 (01) :71-90
[6]   THE EQUIPARTITION POLYTOPE .1. FORMULATIONS, DIMENSION AND BASIC FACETS [J].
CONFORTI, M ;
RAO, MR ;
SASSANO, A .
MATHEMATICAL PROGRAMMING, 1990, 49 (01) :49-70
[7]  
DAHLAUS E, 1983, COMPLEXITY MULTIWAY
[8]  
Garey M. R., 1979, COMPUTERS INTRACTABI
[9]  
GOLDSCHMIDT O, 1985, 29TH P ANN S F COMP, P444
[10]   A CUTTING PLANE ALGORITHM FOR A CLUSTERING PROBLEM [J].
GROTSCHEL, M ;
WAKABAYASHI, Y .
MATHEMATICAL PROGRAMMING, 1989, 45 (01) :59-96