ON THE GENERAL MOTION-PLANNING PROBLEM WITH 2 DEGREES OF FREEDOM

被引:42
作者
GUIBAS, LJ
SHARIR, M
SIFRONY, S
机构
[1] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
[2] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[3] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
D O I
10.1007/BF02187744
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:491 / 521
页数:31
相关论文
共 45 条
[1]  
AGARWAL P, IN PRESS J COMBIN A
[2]  
AGARWAL P, 1988, 4TH P ACM S COMP GEO, P70
[3]  
ARONOV B, IN PRESS COMBINATORI
[4]  
Atallah M. J., 1983, 24th Annual Symposium on Foundations of Computer Science, P92, DOI 10.1109/SFCS.1983.13
[5]   SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS [J].
ATALLAH, MJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1985, 11 (12) :1171-1181
[6]  
BENTLEY JL, 1979, IEEE T COMPUT, V28, P643, DOI 10.1109/TC.1979.1675432
[7]   SOLVING THE TWO-DIMENSIONAL FINDPATH PROBLEM USING A LINE-TRIANGLE REPRESENTATION OF THE ROBOT [J].
BHATTACHARYA, BK ;
ZORBAS, J .
JOURNAL OF ALGORITHMS, 1988, 9 (04) :449-469
[8]  
Chazelle B., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P590, DOI 10.1109/SFCS.1988.21975
[9]  
CHAZELLE B, 1985, 1ST P ACM S COMP GEO, P135
[10]  
Clarkson K. L., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P568, DOI 10.1109/SFCS.1988.21973