SOLVING THE TWO-DIMENSIONAL FINDPATH PROBLEM USING A LINE-TRIANGLE REPRESENTATION OF THE ROBOT

被引:5
作者
BHATTACHARYA, BK [1 ]
ZORBAS, J [1 ]
机构
[1] SIMON FRASER UNIV,BURNABY V5A 1S6,BC,CANADA
关键词
D O I
10.1016/0196-6774(88)90012-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:449 / 469
页数:21
相关论文
共 21 条
[1]  
Benson R.V, 1966, EUCLIDEAN GEOMETRY C
[2]   A SUBDIVISION ALGORITHM IN CONFIGURATION SPACE FOR FINDPATH WITH ROTATION [J].
BROOKS, RA ;
LOZANOPEREZ, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (02) :224-233
[3]  
COXETER HSM, 1968, 12 GEOMETRIC ESSAYS, P137
[4]  
Crowley J. L., 1985, IEEE Journal of Robotics and Automation, VRA-1, P31, DOI 10.1109/JRA.1985.1087002
[5]   TRIANGULATING SIMPLE POLYGONS AND EQUIVALENT PROBLEMS [J].
FOURNIER, A ;
MONTUNO, DY .
ACM TRANSACTIONS ON GRAPHICS, 1984, 3 (02) :153-174
[6]  
Grunbaum B, 1967, CONVEX POLYTOPES
[7]  
Guibas L., 1983, 24th Annual Symposium on Foundations of Computer Science, P100, DOI 10.1109/SFCS.1983.1
[8]  
GUIBAS L, 1983, LECTURE NOTES
[9]   ON THE UNION OF JORDAN REGIONS AND COLLISION-FREE TRANSLATIONAL MOTION AMIDST POLYGONAL OBSTACLES [J].
KEDEM, K ;
LIVNE, R ;
PACH, J ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (01) :59-71
[10]  
Kedem K, 1985, P 1 ANN S COMP GEOM, P75