QUANTUM POINCARE SECTIONS FOR 2-DIMENSIONAL BILLIARDS

被引:51
作者
CRESPI, B [1 ]
PEREZ, G [1 ]
CHANG, SJ [1 ]
机构
[1] UNIV ILLINOIS,DEPT PHYS,URBANA,IL 61801
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 02期
关键词
D O I
10.1103/PhysRevE.47.986
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show a method to extract the quantum Poincare section corresponding to an eigenstate of a two-dimensional billiard. This quantum Poincare section is given in terms of the Birkhoff variables of the problem.
引用
收藏
页码:986 / 991
页数:6
相关论文
共 21 条
[1]   NUMERICAL EXPERIMENTS ON FREE MOTION OF A POINT MASS MOVING IN A PLANE CONVEX REGION - STOCHASTIC TRANSITION AND ENTROPY [J].
BENETTIN, G ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1978, 17 (02) :773-785
[2]  
Berry M. V., 1981, European Journal of Physics, V2, P91, DOI 10.1088/0143-0807/2/2/006
[3]   QUANTIZING A CLASSICALLY ERGODIC SYSTEM - SINAI BILLIARD AND THE KKR METHOD [J].
BERRY, MV .
ANNALS OF PHYSICS, 1981, 131 (01) :163-216
[4]  
BIRKHOFF GD, 1927, DYNAMICAL SYSTEMS, V11
[5]  
Bunimovich L.A., 1974, FUNCT ANAL APPL, V8, P254, DOI DOI 10.1007/BF01075700
[6]   EVOLUTION AND EXACT EIGENSTATES OF A RESONANT QUANTUM SYSTEM [J].
CHANG, SJ ;
SHI, KJ .
PHYSICAL REVIEW A, 1986, 34 (01) :7-22
[7]  
DEALMEIDA AMO, 1982, ANN PHYS-NEW YORK, V138, P115, DOI 10.1016/0003-4916(82)90177-4
[8]  
Douady R., 1982, THESIS U PARIS 7
[9]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518
[10]   THE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC SYSTEMS [J].
HELLER, EJ ;
OCONNOR, PW ;
GEHLEN, J .
PHYSICA SCRIPTA, 1989, 40 (03) :354-359