QUANTUM POINCARE SECTIONS FOR 2-DIMENSIONAL BILLIARDS

被引:51
作者
CRESPI, B [1 ]
PEREZ, G [1 ]
CHANG, SJ [1 ]
机构
[1] UNIV ILLINOIS,DEPT PHYS,URBANA,IL 61801
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 02期
关键词
D O I
10.1103/PhysRevE.47.986
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show a method to extract the quantum Poincare section corresponding to an eigenstate of a two-dimensional billiard. This quantum Poincare section is given in terms of the Birkhoff variables of the problem.
引用
收藏
页码:986 / 991
页数:6
相关论文
共 21 条
[11]  
HENON M, 1983, PHYSICA D, V8, P157, DOI 10.1016/0167-2789(83)90315-9
[12]   DISTRIBUTION-FUNCTIONS IN PHYSICS - FUNDAMENTALS [J].
HILLERY, M ;
OCONNELL, RF ;
SCULLY, MO ;
WIGNER, EP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 106 (03) :121-167
[13]  
HUSIMI K, 1940, P PHYS MATH SOC JPN, V22, P246
[14]  
Lazutkin VF, 1973, MATH USSR IZV, V7, P185, DOI DOI 10.1070/IM1973V007N01ABEH001932
[15]   EIGENFUNCTIONS OF NONINTEGRABLE SYSTEMS IN GENERALIZED PHASE SPACES [J].
LEBOEUF, P ;
SARACENO, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (10) :1745-1764
[16]   SPECTRUM AND EIGENFUNCTIONS FOR A HAMILTONIAN WITH STOCHASTIC TRAJECTORIES [J].
MCDONALD, SW ;
KAUFMAN, AN .
PHYSICAL REVIEW LETTERS, 1979, 42 (18) :1189-1191
[17]   WAVE CHAOS IN THE STADIUM - STATISTICAL PROPERTIES OF SHORT-WAVE SOLUTIONS OF THE HELMHOLTZ-EQUATION [J].
MCDONALD, SW ;
KAUFMAN, AN .
PHYSICAL REVIEW A, 1988, 37 (08) :3067-3086
[18]  
PERELOV A, 1986, GENERALIZED COHERENT
[19]   QUANTIZING A GENERIC FAMILY OF BILLIARDS WITH ANALYTIC BOUNDARIES [J].
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (05) :1049-1074
[20]  
Sinai Yakov G., 1970, RUSS MATH SURV, V25, P141, DOI 10.1070/RM1970v025n02ABEH003794