ON THE ZEROS OF SOME CONTINUOUS ANALOGS OF MATRIX ORTHOGONAL POLYNOMIALS AND A RELATED EXTENSION PROBLEM WITH NEGATIVE SQUARES

被引:11
作者
DYM, H
机构
关键词
D O I
10.1002/cpa.3160470205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new proof of a recent theorem of Ellis, Gohberg, and Lay, which identifies the number of roots of a ''continuous'' matrix orthogonal polynomial in the open upper halfplane with the number of negative eigenvalues of a related integral operator is presented. A related extension problem is then formulated and solved in assorted classes of functions which are analytic in the open upper half plane, apart from a finite number of poles. A discrete analogue of this extension problem is also formulated and solved. (C) 1994 John Wiley & Sons, Inc.
引用
收藏
页码:207 / 256
页数:50
相关论文
共 38 条
  • [21] FUHRMANN PA, 1981, T AMS
  • [22] Gohberg I.C., 1971, SB MATH+, V13, P603
  • [23] GOHBERG IC, 1970, TRANSLATIONS MATH MO, V24
  • [24] Kre M.G., 1966, TEOR FUNKCII FUNKCIO, V2, P131
  • [25] KREIN MG, 1955, DOKL AKAD NAUK SSSR+, V105, P637
  • [26] KREIN MG, 1981, ACTA SCI MATH, V43, P181
  • [27] KREIN MG, 1985, J OPERAT THEOR, V13, P299
  • [28] KREIN MG, 1981, DOKL AKAD NAUK SSSR+, V258, P537
  • [29] KREIN MG, 1970, C MATH SOC, P353
  • [30] KREIN MG, 1948, SB TRUDOV I MAT AKAD, V9, P104