PRECOLORING EXTENSION .1. INTERVAL-GRAPHS

被引:97
作者
BIRO, M [1 ]
HUJTER, M [1 ]
TUZA, Z [1 ]
机构
[1] UNIV MISKOLC,INST MATH,H-3515 MISKOLC,HUNGARY
关键词
D O I
10.1016/0012-365X(92)90646-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is the first article in a series devoted to the study of the following general problem on vertex colorings of graphs. Suppose that some vertices of a graph G are assigned to some colors. Can this 'precoloring' be extended to a proper coloring of G with at most k colors (for some given k)? This question was motivated by practical problems in scheduling and VLSI theory. Here we investigate its complexity status for interval graphs and for graphs with a bounded treewidth.
引用
收藏
页码:267 / 279
页数:13
相关论文
共 21 条
[1]  
ARNBORG S, 1985, BIT, V25, P2, DOI 10.1007/BF01934985
[2]   COMPLEXITY OF FINDING EMBEDDINGS IN A K-TREE [J].
ARNBORG, S ;
CORNEIL, DG ;
PROSKUROWSKI, A .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (02) :277-284
[3]  
BIENSTOCK D, IN PRESS J COMBIN B
[4]  
BISZTRAY D, 1990, COMMUNICATION
[5]   LIST-COLOURINGS OF GRAPHS [J].
BOLLOBAS, B ;
HARRIS, AJ .
GRAPHS AND COMBINATORICS, 1985, 1 (02) :115-127
[6]   THE COMPLEXITY OF COLORING CIRCULAR ARCS AND CHORDS [J].
GAREY, MR ;
JOHNSON, DS ;
MILLER, GL ;
PAPADIMITRIOU, CH .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (02) :216-227
[7]  
GAREY MR, 1976, IEEE T CIRCUITS SYST, V23
[8]  
Golumbic M. C., 1980, ALGORITHMIC GRAPH TH
[9]  
HILTON A, 1990, GRAPH COLORINGS
[10]  
HUJTER M, UNPUB GRAPH CLASSES