PRECOLORING EXTENSION .1. INTERVAL-GRAPHS

被引:97
作者
BIRO, M [1 ]
HUJTER, M [1 ]
TUZA, Z [1 ]
机构
[1] UNIV MISKOLC,INST MATH,H-3515 MISKOLC,HUNGARY
关键词
D O I
10.1016/0012-365X(92)90646-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is the first article in a series devoted to the study of the following general problem on vertex colorings of graphs. Suppose that some vertices of a graph G are assigned to some colors. Can this 'precoloring' be extended to a proper coloring of G with at most k colors (for some given k)? This question was motivated by practical problems in scheduling and VLSI theory. Here we investigate its complexity status for interval graphs and for graphs with a bounded treewidth.
引用
收藏
页码:267 / 279
页数:13
相关论文
共 21 条
[11]  
HUJTER M, UNPUB CLASSES PERFEC
[12]  
HUJTER M, UNPUB GENERAL BOUNDS
[13]  
KAHN J, IN PRESS ASYMPTOTICA
[14]  
MANVEL B, 1985, GRAPHS APPL, P257
[15]   EXTENDING AN EDGE-COLORING [J].
MARCOTTE, O ;
SEYMOUR, PD .
JOURNAL OF GRAPH THEORY, 1990, 14 (05) :565-573
[16]  
Preparata F. P., 1985, VLSI: Algorithms and Architectures. Proceedings of the International Workshop on Parallel Computing and VLSI, P189
[17]   GRAPH MINORS .2. ALGORITHMIC ASPECTS OF TREE-WIDTH [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF ALGORITHMS, 1986, 7 (03) :309-322
[18]  
SCHEFFLER P, 1990, P INT C DISCRETE MAT, P51
[19]  
SCHEFFLER P, 1990, ROSTOCK MATH K, V41, P31
[20]   EFFICIENT TEST FOR CIRCULAR-ARC GRAPHS [J].
TUCKER, A .
SIAM JOURNAL ON COMPUTING, 1980, 9 (01) :1-24