DIFFUSION IN UNIFORMLY HYPERBOLIC ONE-DIMENSIONAL MAPS AND APPELL POLYNOMIALS

被引:33
作者
GASPARD, P
机构
[1] Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Campus Plaine C.P. 231, Blvd. Triomphe
关键词
D O I
10.1016/0375-9601(92)90321-C
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the eigenpolynomials and the eigendistributions associated with Ruelle resonances in a piecewise-linear one-dimensional map model of deterministic diffusion which is uniformly hyperbolic. We show that the eigenpolynomials belong to the class of Appell polynomials and that the eigendistributions are given by series of derivatives of the Dirac distribution. The expansion on the eigenpolynomials is shown to converge for initial densities which are entire functions of exponential type.
引用
收藏
页码:13 / 17
页数:5
相关论文
共 13 条
[1]  
Boas R., 1958, POLYNOMIAL EXPANSION
[2]   SPECTRUM AND EIGENFUNCTIONS OF THE FROBENIUS-PERRON OPERATOR OF THE TENT MAP [J].
DORFLE, M .
JOURNAL OF STATISTICAL PHYSICS, 1985, 40 (1-2) :93-132
[3]   R-ADIC ONE-DIMENSIONAL MAPS AND THE EULER SUMMATION FORMULA [J].
GASPARD, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08) :L483-L485
[4]  
GASPARD P, 1992, IN PRESS J STAT PHYS
[5]   DIFFUSION IN DISCRETE NON-LINEAR DYNAMICAL-SYSTEMS [J].
GROSSMANN, S ;
FUJISAKA, H .
PHYSICAL REVIEW A, 1982, 26 (03) :1779-1782
[6]  
HASEGAWA H, 1992, UNITARITY IRREVERSIB
[7]   TRANSPORT AS A DYNAMIC PROPERTY OF A SIMPLE MAP [J].
HASEGAWA, HH ;
DRIEBE, DJ .
PHYSICS LETTERS A, 1992, 168 (01) :18-24
[8]   NONEQUILIBRIUM STATISTICAL-MECHANICS OF THE BAKER MAP - RUELLE RESONANCES AND SUBDYNAMICS [J].
HASEGAWA, HH ;
SAPHIR, WC .
PHYSICS LETTERS A, 1992, 161 (06) :477-482
[9]   DECAYING EIGENSTATES FOR SIMPLE CHAOTIC SYSTEMS [J].
HASEGAWA, HH ;
SAPHIR, WC .
PHYSICS LETTERS A, 1992, 161 (06) :471-476
[10]  
ROEPSTORFF G, 1987, EXPONETIAL DECAY COR