FOUNDATIONS OF FUZZY-SETS

被引:70
作者
HOHLE, U [1 ]
STOUT, LN [1 ]
机构
[1] ILLINOIS WESLEYAN UNIV, DEPT MATH, BLOOMINGTON, IL 61702 USA
关键词
FUZZY SETS; QUASITOPOI; FOOTINGS; WEAK TOPOI;
D O I
10.1016/0165-0114(91)90163-K
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper gives an overview of the origins of fuzzy set theory and the problems for the foundations of fuzzy sets arising from those origins and current practice. It then gives detailed accounts of categorical approaches using a closed structure to capture the fuzzy AND connective. Within these categories weak forms of subobject representations provide an internal second order logic. An approach to fuzzy real numbers and fuzzy topology is included to illustrate the use of this internal; second order theory.
引用
收藏
页码:257 / 296
页数:40
相关论文
共 70 条
[1]   ON SOME LOGICAL CONNECTIVES FOR FUZZY-SETS THEORY [J].
ALSINA, C ;
TRILLAS, E ;
VALVERDE, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 93 (01) :15-26
[2]  
ALSINA C, 1983, FUZZY SET THEORY POS
[3]   FUZZY POWER SETS AND FUZZY IMPLICATION OPERATORS [J].
BANDLER, W ;
KOHOUT, L .
FUZZY SETS AND SYSTEMS, 1980, 4 (01) :13-30
[4]   SEMANTICS OF IMPLICATION OPERATORS AND FUZZY RELATIONAL PRODUCTS [J].
BANDLER, W ;
KOHOUT, LJ .
INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1980, 12 (01) :89-116
[5]   FUZZY SET-THEORY AND TOPOS THEORY [J].
BARR, M .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1986, 29 (04) :501-508
[6]  
Bell J. L., 1988, OXFORD LOGIC GUIDES, V14
[7]   SEMISIMPLE ALGEBRAS OF INFINITE VALUED LOGIC AND BOLD FUZZY SET-THEORY [J].
BELLUCE, LP .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (06) :1356-1379
[8]  
BELLUCE LP, 1989, SEMISIMPLE COMPLETE
[9]  
BIRKOFF G, 1973, AMS C PUBLICATIONS, V25
[10]  
Chang Chen Chung, 1958, T AM MATH SOC, V88, P467, DOI DOI 10.1090/S0002-9947-1958-0094302-9