FOUNDATIONS OF FUZZY-SETS

被引:70
作者
HOHLE, U [1 ]
STOUT, LN [1 ]
机构
[1] ILLINOIS WESLEYAN UNIV, DEPT MATH, BLOOMINGTON, IL 61702 USA
关键词
FUZZY SETS; QUASITOPOI; FOOTINGS; WEAK TOPOI;
D O I
10.1016/0165-0114(91)90163-K
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper gives an overview of the origins of fuzzy set theory and the problems for the foundations of fuzzy sets arising from those origins and current practice. It then gives detailed accounts of categorical approaches using a closed structure to capture the fuzzy AND connective. Within these categories weak forms of subobject representations provide an internal second order logic. An approach to fuzzy real numbers and fuzzy topology is included to illustrate the use of this internal; second order theory.
引用
收藏
页码:257 / 296
页数:40
相关论文
共 70 条
[21]  
GOTTWALD S, 1976, LECT NOTES MATH, V537, P109
[22]  
Gottwald S., 1984, ASPECTS VAGUENESS, P13
[23]  
Hay Louise Schmir, 1963, J SYMBOLIC LOGIC, V28, P77
[24]   INJECTIVITY IN THE TOPOS OF COMPLETE HEYTING ALGEBRA VALUED SETS [J].
HIGGS, D .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1984, 36 (03) :550-568
[25]  
HIGGS D, 1973, UNPUB CATEGORY APPRO
[26]   THE IF THEN ELSE STATEMENT AND INTERVAL-VALUED FUZZY-SETS OF HIGHER TYPE [J].
HISDAL, E .
INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1981, 15 (04) :385-455
[27]  
HISDAL E, 1983, FUZZY SET THEORY POS
[28]   FUZZY TOPOLOGIES AND TOPOLOGICAL-SPACE OBJECTS IN A TOPOS [J].
HOHLE, U .
FUZZY SETS AND SYSTEMS, 1986, 19 (03) :299-304
[29]   PROBABILISTIC TOPOLOGIES [J].
HOHLE, U .
MANUSCRIPTA MATHEMATICA, 1978, 26 (03) :223-245
[30]   FUZZY REAL NUMBERS AS DEDEKIND CUTS WITH RESPECT TO A MULTIPLE-VALUED LOGIC [J].
HOHLE, U .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :263-278