SENSITIVITY THEOREMS IN INTEGER LINEAR-PROGRAMMING

被引:123
作者
COOK, W
GERARDS, AMH
SCHRIJVER, A
TARDOS, E
机构
[1] TILBURG UNIV,DEPT ECONOMETR,5000 LE TILBURG,NETHERLANDS
[2] MATH CENTRUM,1098 SJ AMSTERDAM,NETHERLANDS
关键词
MATHEMATICAL TECHNIQUES - Sensitivity Analysis;
D O I
10.1007/BF01582230
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider integer linear programming problems with a fixed coefficient matrix and varying objective function and right-hand-side vector. Among our results, we show that, for any optimal solution to a linear program max left brace w chi : A chi b right brace , the distance to the nearest optimal solution to the corresponding integer program is at most the dimension of the problem multiplied by the largest subdeterminant of the integral matrix A. Using this, we strengthen several integer programming 'proximity' results. We also show that the Chvatal rank of a polyhedron left brace chi : A chi less than equivalent to b right brace can be bounded above by a function of the matrix A, independent of the vector b.
引用
收藏
页码:251 / 264
页数:14
相关论文
共 27 条
[1]   VALUE FUNCTION OF A MIXED INTEGER-PROGRAM .1. [J].
BLAIR, CE ;
JEROSLOW, RG .
DISCRETE MATHEMATICS, 1977, 19 (02) :121-138
[2]   THE VALUE FUNCTION OF AN INTEGER-PROGRAM [J].
BLAIR, CE ;
JEROSLOW, RG .
MATHEMATICAL PROGRAMMING, 1982, 23 (03) :237-273
[3]   VALUE FUNCTION OF A MIXED INTEGER-PROGRAM .2. [J].
BLAIR, CE ;
JEROSLOW, RG .
DISCRETE MATHEMATICS, 1979, 25 (01) :7-19
[4]  
BOYD SC, UNPUB FACET GENERATI
[5]  
Chvatal V., 1973, Mathematical Programming, V5, P29, DOI 10.1007/BF01580109
[6]  
Chvatal V., 1984, 84326OR U BONN I OK
[7]  
COOK W, UNPUB COMPLEXITY CUT
[8]  
EDMONDS J, 1970, COMBINATORIAL STRUCT, P89
[9]  
GERARDS AMH, UNPUB MATRICES EDMON
[10]   TOTAL DUAL INTEGRALITY AND INTEGER POLYHEDRA [J].
GILES, FR ;
PULLEYBLANK, WR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 25 (01) :191-196