A NONLINEAR DYNAMIC-MODEL OF SOCIAL-INTERACTION

被引:27
作者
BUDER, EH
机构
关键词
D O I
10.1177/009365091018002003
中图分类号
G2 [信息与知识传播];
学科分类号
05 ; 0503 ;
摘要
This article presents a dynamic model of dyadic social interaction. It is shown that a set of simple deterministic arithmetic operations representing basic assumptions about social-involvement behavior can lead to a variety of complex outcomes, including asymptotically stable behavior, self-sustaining periodic behavior, and chaotic behavior. These outcomes illustrate the emergence of macroscopic interaction-level properties from microscopic individual-level rules. © 1991, Sage. All rights reserved.
引用
收藏
页码:174 / 198
页数:25
相关论文
共 26 条
[1]  
Buder E, 1986, TORONTO SEMIOTIC CIR, V2
[2]  
BUDER EH, 1989, 39TH ANN C INT COMM
[3]  
Cappella J. N., 1983, NONVERBAL INTERACTIO, P113
[5]  
CAPPELLA JN, 1976, EXPLORATIONS INTERPE, P59
[6]   MOTHER INFANT FACE-TO-FACE INTERACTION - INFLUENCE IS BIDIRECTIONAL AND UNRELATED TO PERIODIC CYCLES IN EITHER PARTNERS BEHAVIOR [J].
COHN, JF ;
TRONICK, EZ .
DEVELOPMENTAL PSYCHOLOGY, 1988, 24 (03) :386-392
[7]  
Coleman J. S, 1987, MICROMACROLINK, P153
[8]  
Collins R, 1987, MICROMACROLINK, P193
[9]  
DAY KD, 1990, 40TH ANN C INT COMM
[10]  
Devaney R., 1989, INTRO CHAOTIC DYNAMI, Vsecond