A NONLINEAR DYNAMIC-MODEL OF SOCIAL-INTERACTION

被引:27
作者
BUDER, EH
机构
关键词
D O I
10.1177/009365091018002003
中图分类号
G2 [信息与知识传播];
学科分类号
05 ; 0503 ;
摘要
This article presents a dynamic model of dyadic social interaction. It is shown that a set of simple deterministic arithmetic operations representing basic assumptions about social-involvement behavior can lead to a variety of complex outcomes, including asymptotically stable behavior, self-sustaining periodic behavior, and chaotic behavior. These outcomes illustrate the emergence of macroscopic interaction-level properties from microscopic individual-level rules. © 1991, Sage. All rights reserved.
引用
收藏
页码:174 / 198
页数:25
相关论文
共 26 条
[21]  
Rice R. E., 1986, COMMUNICATION YB, V9, P315
[22]  
RICHTER FM, 1986, METATHEORY SOCIAL SC
[23]  
Ruelle D., 1989, CHAOTIC EVOLUTION ST
[24]  
Thompson J. M. T., 2002, NONLINEAR DYNAMICS C
[25]  
TUTZAUER F, 1987, COMMUNICATION YB, V10, P217
[26]  
Warner R., 1988, SOCIAL PSYCHOL TIME, P63