BOUNDARY-LAYER PHENOMENA FOR DIFFERENTIAL-DELAY EQUATIONS WITH STATE-DEPENDENT TIME LAGS .1.

被引:81
作者
MALLETPARET, J [1 ]
NUSSBAUM, RD [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1007/BF00418497
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we begin a study of the differential-delay equation epsilonx'(t) = - x(t) + f(x(t - r)), r = r (x(t)). We prove the existence of periodic solutions for 0 < epsilon < epsilon0, where epsilon0 is an optimal positive number. We investigate regularity and monotonicity properties of solutions x(t) which are defined for all t and of associated functions like eta(t) = t - r(x(t)). We begin the development of a Poincare-Bendixson theory and phase-plane analysis for such equations. In a companion paper these results will be used to investigate the limiting profile and corresponding boundary layer phenomena for periodic solutions as epsilon approaches zero.
引用
收藏
页码:99 / 146
页数:48
相关论文
共 50 条
[1]  
BROWN RF, 1971, LEFSCHETZ FIXED POIN
[2]  
Chow S. N., 1985, CHAOS FRACTAL DYNAMI, P161
[3]  
Chow S. N., 1983, N HOLLAND MATH STUDI, V80, P7
[4]   INTEGRAL AVERAGING AND BIFURCATION [J].
CHOW, SN ;
MALLETPARET, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 26 (01) :112-159
[5]   PERIODIC-SOLUTIONS OF CERTAIN NONLINEAR INTEGRAL-EQUATIONS WITH A TIME LAG [J].
COLEMAN, BD ;
RENNINGER, GH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (01) :111-120
[6]   ALTERNATE PATHS TO CHAOS IN OPTICAL BISTABILITY [J].
DERSTINE, MW ;
GIBBS, HM ;
HOPF, FA ;
KAPLAN, DL .
PHYSICAL REVIEW A, 1983, 27 (06) :3200-3208
[7]   BIFURCATION GAP IN A HYBRID OPTICALLY BISTABLE SYSTEM [J].
DERSTINE, MW ;
GIBBS, HM ;
HOPF, FA ;
KAPLAN, DL .
PHYSICAL REVIEW A, 1982, 26 (06) :3720-3722
[8]  
Driver R. D., 1963, CONTRIB DIFFERENTIAL, V1, P317
[9]   NOTE ON UNIQUENESS FOR A 1-DIMENSIONAL 2-BODY PROBLEM OF CLASSICAL ELECTRODYNAMICS [J].
DRIVER, RD ;
NORRIS, MJ .
ANNALS OF PHYSICS, 1967, 42 (02) :347-&
[10]   A 2-BODY PROBLEM OF CLASSICAL ELECTRODYNAMICS - THE ONE-DIMENSIONAL CASE [J].
DRIVER, RD .
ANNALS OF PHYSICS, 1963, 21 (01) :122-142