BOUNDARY-LAYER PHENOMENA FOR DIFFERENTIAL-DELAY EQUATIONS WITH STATE-DEPENDENT TIME LAGS .1.

被引:81
作者
MALLETPARET, J [1 ]
NUSSBAUM, RD [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1007/BF00418497
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we begin a study of the differential-delay equation epsilonx'(t) = - x(t) + f(x(t - r)), r = r (x(t)). We prove the existence of periodic solutions for 0 < epsilon < epsilon0, where epsilon0 is an optimal positive number. We investigate regularity and monotonicity properties of solutions x(t) which are defined for all t and of associated functions like eta(t) = t - r(x(t)). We begin the development of a Poincare-Bendixson theory and phase-plane analysis for such equations. In a companion paper these results will be used to investigate the limiting profile and corresponding boundary layer phenomena for periodic solutions as epsilon approaches zero.
引用
收藏
页码:99 / 146
页数:48
相关论文
共 50 条
[31]  
MALLETPARET J, 1986, P SYMP PURE MATH, V45, P155
[32]   MORSE DECOMPOSITIONS FOR DELAY-DIFFERENTIAL EQUATIONS [J].
MALLETPARET, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 72 (02) :270-315
[33]   A DIFFERENTIAL-DELAY EQUATION ARISING IN OPTICS AND PHYSIOLOGY [J].
MALLETPARET, J ;
NUSSBAUM, RD .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :249-292
[34]  
MALLETPARET J, 1986, ANN MAT PUR APPL, V145, P33, DOI 10.1007/BF01790539
[35]  
MALLETPARET J, 1983, SYSTEMS NONLINEAR PA, P351
[36]  
MALLETPARET J, UNPUB BOUNDARY LAYER
[37]  
MALLETPARET J, IN PRESS P ROYAL SOC
[38]   PERIODIC-SOLUTIONS OF SOME NON-LINEAR DELAY-DIFFERENTIAL EQUATIONS [J].
MARTELLI, M ;
SCHMITT, K ;
SMITH, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 74 (02) :494-503
[39]  
NUSSBAUM R.D., 1985, SEMINAIRE MATH SUPER
[40]  
NUSSBAUM RD, 1973, MICH MATH J, V20, P249