NUMERICAL APPROXIMATION OF A METASTABLE SYSTEM

被引:27
作者
CARR, J [1 ]
DUNCAN, DB [1 ]
WALSHAW, CH [1 ]
机构
[1] UNIV GREENWICH,SCH MATH STAT & COMP,LONDON SE18 6PF,ENGLAND
关键词
D O I
10.1093/imanum/15.4.505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the Becker-Doring cluster equations as an example, we highlight some of the problems that can arise in the numerical approximation of dynamical systems with slowly varying solutions. We describe the Becker-Doring model, summarize some of its properties and construct a numerical approximation which allows accurate and efficient computation of solutions in the long, slowly varying metastable phase. We use the approximation to obtain test results and discuss the clear relationship between them and equilibrium solutions of the Becker-Doring equations.
引用
收藏
页码:505 / 521
页数:17
相关论文
共 16 条
[1]   THE BECKER-DORING CLUSTER EQUATIONS - BASIC PROPERTIES AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS [J].
BALL, JM ;
CARR, J ;
PENROSE, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (04) :657-692
[2]  
Brenan K. E., 1989, NUMERICAL SOLUTION I
[3]   INVARIANT-MANIFOLDS FOR METASTABLE PATTERNS IN UT=EPSILON-2UXX-F(U) [J].
CARR, J ;
PEGO, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :133-160
[4]  
CARR J, 1992, DYNAMICS NUMERICS NU, P23
[5]  
FUSCO G., 1989, J DYN DIFFER EQU, V1, P75, DOI DOI 10.1007/BF01048791
[6]   A PHENOMENOLOGICAL APPROACH TO MICELLIZATION KINETICS [J].
HALL, DG .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1987, 83 :967-983
[7]  
Hindmarsh A.C., 1983, SCI COMPUT, P55
[8]  
KVAERNO A, 1992, 21992 U TRONDH DEP M
[9]  
LAMBERT JD, 1991, NUMERICAL METHODS OR
[10]  
PENROSE O, 1983, J STAT PHYS, V30, P219, DOI 10.1007/BF01010876