ROBUST M-ESTIMATORS ON SPHERES

被引:23
作者
KO, DJ
CHANG, T
机构
[1] Medical College of Virginia, Virginia Commonwealth University, University of Virginia
关键词
D O I
10.1006/jmva.1993.1029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce M-estimators for location and concentration parameters of von Mises-Fisher distributions on unit spheres. These include the directional mean, normalized spatial median, spherical median, and the mle of the concentration parameter. We find the influence functions and asymptotic distributions of such estimators and give necessary and sufficient conditions under which the M-estimators become SB-robust. SB-robust M-estimators, which are optimal in a sense similar to Hampel, are proposed. We discuss both simultaneous estimation of location and concentration and estimation of one parameter when the other is known. The behavior of the optimal estimators, together with several alternatives, under extreme contamination and moderate sample sizes is studied using simulation. An example, previously studied by Fisher, Lewis, and Embleton (1987, Analysis of Spherical Data, Cambridge Univ. Press, Cambridge, UK), dealing with remanent magnetization is reanalyzed using these techniques. © 1993 Academic Press, Inc.
引用
收藏
页码:104 / 136
页数:33
相关论文
共 23 条
[11]   ROBUST ESTIMATION OF LOCATION PARAMETER [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :73-&
[12]  
HUBER PJ, 1967, 5TH P BERK S MATH ST, V1, P221
[13]  
KIMBER AC, 1985, APPL STATIST, V34, P162
[14]   ROBUSTNESS OF ESTIMATORS FOR DIRECTIONAL-DATA [J].
KO, D ;
GUTTORP, P .
ANNALS OF STATISTICS, 1988, 16 (02) :609-618
[15]  
KO D, 1991, 9101 MEDD COLL VIRG
[17]   ROBUST MEASURES OF LOCATION FOR DIRECTIONAL-DATA [J].
LENTH, RV .
TECHNOMETRICS, 1981, 23 (01) :77-81
[18]  
MARDIA KV, 1972, STATISTICS DIRECTION
[19]   A NEW INFINITESIMAL APPROACH TO ROBUST ESTIMATION [J].
ROUSSEEUW, PJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (01) :127-132
[20]  
SILVEY SD, 1975, STATISTICAL INFERENC