MINIMAL REPRESENTATIONS, GEOMETRIC-QUANTIZATION, AND UNITARITY

被引:35
作者
BRYLINSKI, R
KOSTANT, B
机构
[1] HARVARD UNIV, CAMBRIDGE, MA 02138 USA
[2] MIT, CAMBRIDGE, MA 02139 USA
关键词
JOSEPH IDEAL; NILPOTENT ORBIT; SYMPLECTIC MANIFOLD; HALF-FORM; HYPERGEOMETRIC FUNCTION;
D O I
10.1073/pnas.91.13.6026
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the framework of geometric quantization we explicitly construct, in a uniform fashion, a unitary minimal representation pi(o) of every simply-connected real Lie group G(o) such that the maximal compact subgroup of G(o) has finite center and G(o) admits some minimal representation. We obtain algebraic and analytic results about pi(o). We give several results on the algebraic and symplectic geometry of the minimal nilpotent orbits and then ''quantize'' these results to obtain the corresponding representations. We assume (Lie C-o)(C) is simple.
引用
收藏
页码:6026 / 6029
页数:4
相关论文
共 12 条
[1]   UNITARIZATION OF A SINGULAR REPRESENTATION OF SO(P,Q) [J].
BINEGAR, B ;
ZIERAU, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (02) :245-258
[2]   MINIMAL REPRESENTATIONS OF E(6), E(7), AND E(8) AND THE GENERALIZED CAPELLI IDENTITY [J].
BRYLINSKI, R ;
KOSTANT, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (07) :2469-2472
[3]   NILPOTENT ORBITS, NORMALITY, AND HAMILTONIAN GROUP-ACTIONS [J].
BRYLINSKI, R ;
KOSTANT, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 26 (02) :269-275
[4]  
BRYLINSKI R, 1994, J AM MATH SOC, V7, P269
[5]  
GROSS B, IN PRESS LIE THEORY
[6]  
JOSEPH A, 1976, ANN SCI ECOLE NORM S, V9, P1
[7]  
KAZHDAN D, 1990, SMALLEST REPRESENTAT, V2, P209
[8]   THE CAPELLI IDENTITY, TUBE DOMAINS, AND THE GENERALIZED LAPLACE TRANSFORM [J].
KOSTANT, B ;
SAHI, S .
ADVANCES IN MATHEMATICS, 1991, 87 (01) :71-92
[9]  
KOSTANT B, 1990, PROG MATH, V92, P85
[10]  
Vogan D., 1980, NONCOMMUTATIVE HARMO, P506