AN ESSENTIAL ROLE FOR THE ESCHERICHIA-COLI DNAK PROTEIN IN STARVATION-INDUCED THERMOTOLERANCE, H2O2 RESISTANCE, AND REDUCTIVE DIVISION

被引:54
作者
ROCKABRAND, D [1 ]
ARTHUR, T [1 ]
KORINEK, G [1 ]
LIVERS, K [1 ]
BLUM, P [1 ]
机构
[1] UNIV NEBRASKA,SCH BIOL SCI,LINCOLN,NE 68588
关键词
D O I
10.1128/jb.177.13.3695-3703.1995
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
During a 3-day period, glucose starvation of wild-type Escherichia coli produced thermotolerant, H2O2-resistant, small cells with a round morphology. These cells contained elevated levels of the DnaK protein, adjusted either for total protein or on a per-cell basis. Immunoprecipitation of [S-35]methionine-labeled protein produced by such starving cells demonstrated that DnaK underwent continuous synthesis but at decreasing rates throughout this time. Glucose resupplementation of starving cells resulted in rapid loss of thermotolerance, H2O2 resistance, and the elevated DnaK levels. A dnaK deletion mutant, but not ad otherwise isogenic wild-type strain, failed to develop starvation-induced thermotolerance or H2O2 resistance. The filamentous phenotype associated with DnaK deficiency was suppressed by cultivation in a defined glucose medium. When starved for glucose, the nonfilamentous and rod-shaped dnaK mutant strain failed to convert into the small spherical form typical of starving wild-type cells. The dnaK mutant retained the ability to develop adaptive H2O2 resistance during growth but not adaptive resistance to heat. Complementation of DnaK deficiency by using P-tac-regulated dnaK(+) and dnaK(+)J(+) expression plasmids confirmed a specific role for the DnaK molecular chaperone in these starvation-induced phenotypes.
引用
收藏
页码:3695 / 3703
页数:9
相关论文
共 57 条
[21]  
Holmquist L., Jouper-Jaan A., Weichart D., Nelson D.R., Kjelleberg S., The induction of stress proteins in three marine Vibrio during carbon starvation, FEMS Microbiol. Ecol., 12, pp. 185-194, (1993)
[22]  
Jacobson A., Gillespie D., An RNA polymerase mutant defective in ATP initiations, Cold Spring Harbor Symp. Quant. Biol., 35, pp. 85-93, (1970)
[23]  
James R., Dean D.O., Debbage J., Five open reading frames upstream of the dnaK gene of E. coli, DNA Seq.-J., 3, pp. 327-332, (1993)
[24]  
Jenkins D.E., Auger E.A., Matin A., Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival, J. Bacteriol., 173, pp. 1992-1996, (1991)
[25]  
Jenkins D.E., Schultz J.E., Matin A., Starvation-induced cross protection against heat or H<sub>2</sub>O<sub>2</sub>challenge in Escherichia coli, J. Bacteriol., 170, pp. 3910-3914, (1988)
[26]  
Kawamukai M., Matsuda H., Fujii W., Utsumi R., Komano T., Nucleotide sequences of fic and fic-1 genes involved in cell filamentation induced by cyclic AMP in Escherichia coli, J. Bacteriol., 171, pp. 4525-4529, (1989)
[27]  
Kawula T.H., Kelivelt M.J., Mutations in a gene encoding a new Hsp70 suppress rapid DNA inversion in bgl activation, but not proU derepression, in hns-1 mutant Escherichia coli, J. Bacteriol., 176, pp. 610-619, (1994)
[28]  
Kolter R., Siegele D.A., Tormo A., The stationary phase of the bacterial life cycle, Annu. Rev. Microbiol., 47, pp. 855-874, (1993)
[29]  
Krska J., Elthon T., Blum P., Monoclonal antibody recognition and function of a DnaK (HSP70) epitope found in gram-negative bacteria, J. Bacteriol., 175, pp. 6433-6440, (1993)
[30]  
Kusukawa N., Yura T., Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress, Genes Dev., 2, pp. 874-882, (1988)