CONCEPT OF REPULSIVITY IN DYNAMICAL-SYSTEMS AS MOTIVATED BY PERSISTENCE PROBLEMS IN POPULATION BIOLOGY

被引:5
作者
GREGORIUS, HR
机构
[1] Lehrstuhl für Forstgenetik und Forstpflanzenzüchbung der Universität Göttin-gen, Büsgenweg
关键词
D O I
10.1080/00207727908941627
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An alternative to stability analysis in population biology is proposed for cases in which persistence problems such as coexistence of species and protectedness of genetic polymorphisms are of primary interest. In order to arrive at a general mathematical description, the concept of repulsivity of certain sets with respect to dynamical systems (continuous-time as well as discrete-time) defined on metric spaces is introduced. A first basic result linking this concept to the existence of Lyapunov functions is derived in analogy to the respective results from stability theory. © 1979 Taylor & Francis Group, LLC.
引用
收藏
页码:863 / 871
页数:9
相关论文
共 14 条
[1]  
Bhatia N.P., 1970, STABILITY THEORY DYN
[2]   DOMAINS OF STABILITY AND RESILIENCE FOR BIOLOGICAL POPULATIONS OBEYING DIFFERENCE EQUATIONS [J].
DIAMOND, P .
JOURNAL OF THEORETICAL BIOLOGY, 1976, 61 (02) :287-306
[3]   ALGORITHM FOR CALCULATING A CLASS OF DISCRETE STOCHASTIC LIAPUNOV FUNCTIONS [J].
DIAMOND, P .
INTERNATIONAL JOURNAL OF CONTROL, 1976, 23 (01) :137-142
[4]  
DIAMOND P, 1975, J MATH ANAL APPLIC, V50, P286
[5]   ITERATIONS OF CONTINUOUS MAPPINGS ON METRIC SPACES - ASYMPTOTIC STABILITY AND LYAPUNOV FUNCTIONS [J].
GREGORIUS, HR ;
ZIEHE, M .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1979, 10 (08) :855-862
[6]   UBER DIE ANWENDUNG DER METHODE VON LJAPUNOV AUF DIFFERENZENGLEICHUNGEN [J].
HAHN, W .
MATHEMATISCHE ANNALEN, 1958, 136 (05) :430-441
[7]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[8]   BIOLOGICAL POPULATIONS OBEYING DIFFERENCE EQUATIONS - STABLE POINTS, STABLE CYCLES, AND CHAOS [J].
MAY, RM .
JOURNAL OF THEORETICAL BIOLOGY, 1975, 51 (02) :511-524
[9]  
OSTROWSKI A, 1957, CR HEBD ACAD SCI, V244, P288
[10]  
PERRON O, 1929, J REINE ANGEW MATH, V161, P6