MODIFIED BOUNDS FOR COVERING CODES

被引:31
作者
HONKALA, IS
机构
[1] Department of Mathematics, University of Turku, 20500
关键词
BINARY COVERING CODE; COVERING RADIUS; BOUNDS FOR COVERING CODES; S-SUBJECTIVE MATRICES; NORMAL AND ABNORMAL CODES;
D O I
10.1109/18.75253
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modifications of the van Wee lower bounds are proved for K(n,R), the minimal number of codewords in any binary code of length n and covering radius R. Results about the classical combinatorial problem of covering pairs by k-tuples are used. Also studied are s-surjectivity and covering radius, and subnormal codes. A revised table for K(n,R), n less-than-or-equal-to 33, R less-than-or-equal-to 10 is given.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 43 条
[1]  
Anderson I., 1987, COMBINATORICS FINITE
[2]   BOUNDS FOR BINARY CODES OF LENGTH LESS THAN 25 [J].
BEST, MR ;
BROUWER, AE ;
MACWILLIAMS, FJ ;
ODLYZKO, AM ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (01) :81-92
[3]  
Bollobas B., 1973, Journal of Combinatorial Theory, Series A, V15, P363, DOI 10.1016/0097-3165(73)90086-1
[4]   SHORT CODES WITH A GIVEN COVERING RADIUS [J].
BRUALDI, RA ;
PLESS, VS ;
WILSON, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) :99-109
[5]  
BRUALDI RA, LENGTH CODES GIVEN C
[6]  
BUSSCHBACH P, 1984, 84D005 TECHN REP EC
[7]   INEQUALITIES FOR COVERING CODES [J].
CALDERBANK, AR ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :1276-1280
[8]   LOWER BOUNDS FOR Q-ARY COVERING CODES [J].
CHEN, W ;
HONKALA, IS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :664-671
[9]   APPLICATIONS OF CODING THEORY TO COMMUNICATION COMBINATORIAL PROBLEMS [J].
COHEN, GD .
DISCRETE MATHEMATICS, 1990, 83 (2-3) :237-248
[10]   FURTHER RESULTS ON THE COVERING RADIUS OF CODES [J].
COHEN, GD ;
LOBSTEIN, AC ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) :680-694