ENERGY FUNCTIONALS OF KNOTS .2.

被引:34
作者
OHARA, J [1 ]
机构
[1] TOKYO METROPOLITAN UNIV,DEPT MATH,1-1 MINAMI OHSAWA,HACHIOJI,TOKYO 19203,JAPAN
关键词
KNOT; ENERGY; MINIMIZER;
D O I
10.1016/0166-8641(94)90108-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an energy functional of knots, e(j)p (jp > 2), that is finite valued for embedded circles and takes + infinity for circles with double points. We show that for any b is-an-element-of R there are finitely many solid tori T1,..., T(m) such that any knot with e(j)p less-than-or-equal-to b can be contained in some T(i) in a good manner. Then we can show the existence of a minimizer of e(j)p in each knot type.
引用
收藏
页码:45 / 61
页数:17
相关论文
共 13 条
[1]   MOBIUS INVARIANCE OF KNOT ENERGY [J].
BRYSON, S ;
FREEDMAN, MH ;
HE, ZX ;
WANG, ZH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 28 (01) :99-103
[2]   COMPUTING CANONICAL CONFORMATIONS FOR KNOTS [J].
BUCK, G ;
ORLOFF, J .
TOPOLOGY AND ITS APPLICATIONS, 1993, 51 (03) :247-253
[3]   KNOTS AS DYNAMICAL-SYSTEMS [J].
BUCK, G ;
SIMON, J .
TOPOLOGY AND ITS APPLICATIONS, 1993, 51 (03) :229-246
[4]  
BUCK G, IN PRESS TOPOLOGY AP
[5]  
FREEDMAN MH, IN PRESS ANN MATH
[6]  
GROMOV M, 1983, J DIFFER GEOM, V18, P1
[7]  
GUNN C, PROGRAM LINKMOVER
[8]   A REMARK ON OHARA ENERGY OF KNOTS [J].
NAKAUCHI, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (01) :293-296
[9]   ENERGY OF A KNOT [J].
OHARA, J .
TOPOLOGY, 1991, 30 (02) :241-247
[10]  
OHARA J, 1992, TOPOLOGY HAWAII, P201