NONUNIQUENESS IN INVERSE ACOUSTIC SCATTERING ON THE LINE

被引:1
作者
AKTOSUN, T [1 ]
VANDERMEE, C [1 ]
机构
[1] UNIV CAGLIARI,DEPT MATH,I-09100 CAGLIARI,ITALY
关键词
D O I
10.1063/1.530661
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalized one-dimensional Schrodinger equation d2phi/dx2+k2H(X)2phi =P(x)phi is considered. The nonuniqueness is studied in the recovery of the function P(x) when the scattering matrix, H(x), and the bound state energies and norming constants are known. It is shown that when the reflection coefficient is unity at zero energy, there is a one-parameter family of functions P(x) corresponding to the same scattering data. An explicitly solved example is provided. The construction of H(x) from the scattering data is also discussed when H(x) is piecewise continuous, and two explicitly solved examples are given with H(x) containing a jump discontinuity.
引用
收藏
页码:693 / 709
页数:17
相关论文
共 18 条
[1]   ON THE RIEMANN-HILBERT PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
AKTOSUN, T ;
KLAUS, M ;
VANDERMEE, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :2651-2690
[2]   INVERSE SCATTERING IN 1-D NONHOMOGENEOUS MEDIA AND RECOVERY OF THE WAVE SPEED [J].
AKTOSUN, T ;
KLAUS, M ;
VANDERMEE, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (04) :1395-1402
[3]   SCATTERING AND INVERSE SCATTERING IN ONE-DIMENSIONAL NONHOMOGENEOUS MEDIA [J].
AKTOSUN, T ;
KLAUS, M ;
VANDERMEE, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) :1717-1744
[4]   SCATTERING AND INVERSE SCATTERING FOR A 2ND-ORDER DIFFERENTIAL-EQUATION [J].
AKTOSUN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (05) :1619-1634
[5]  
AKTOSUN T, 1993, LECTURE NOTES PHYSIC, V427, P37
[6]  
AKTOSUN T, 1986, THESIS INDIANA U BLO
[7]  
Chadan K., 1989, INVERSE PROBLEMS QUA
[8]   EXTENSION OF THE ONE-DIMENSIONAL SCATTERING-THEORY, AND AMBIGUITIES [J].
DEGASPERIS, A ;
SABATIER, PC .
INVERSE PROBLEMS, 1987, 3 (01) :73-109
[9]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[10]  
Faddeev L., 1964, T MATEM I VA STEKLOV, V73, P314