ON THE RIEMANN-HILBERT PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER-EQUATION

被引:32
作者
AKTOSUN, T
KLAUS, M
VANDERMEE, C
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV,DEPT MATH,BLACKSBURG,VA 24061
[2] UNIV CAGLIARI,DEPT MATH,I-09100 CAGLIARI,ITALY
关键词
D O I
10.1063/1.530089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A matrix Riemann-Hilbert problem associated with the one-dimensional Schrodinger equation is considered, and the existence and uniqueness of its solutions are studied. The solution of this Riemann-Hilbert problem yields the solution of the inverse scattering problem for a larger class of potentials than the usual Faddeev class. Some examples of explicit solutions of the Riemann-Hilbert problem are given, and the connection with ambiguities in the inverse scattering problem is established.
引用
收藏
页码:2651 / 2690
页数:40
相关论文
共 18 条
[1]   MARCHENKO INVERSION FOR PERTURBATIONS .1. [J].
AKTOSUN, T .
INVERSE PROBLEMS, 1987, 3 (04) :523-553
[2]   NONUNIQUENESS IN THE ONE-DIMENSIONAL INVERSE SCATTERING PROBLEM [J].
AKTOSUN, T ;
NEWTON, RG .
INVERSE PROBLEMS, 1985, 1 (04) :291-300
[3]   POTENTIALS WHICH CAUSE THE SAME SCATTERING AT ALL ENERGIES IN ONE DIMENSION [J].
AKTOSUN, T .
PHYSICAL REVIEW LETTERS, 1987, 58 (21) :2159-2161
[4]   EXPLICIT WIENER-HOPF FACTORIZATION FOR CERTAIN NONRATIONAL MATRIX FUNCTIONS [J].
AKTOSUN, T ;
KLAUS, M ;
VANDERMEE, C .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (06) :879-900
[5]  
AKTOSUN T, 1986, THESIS INDIANA U BLO
[6]  
CLANCEY K, 1981, FACTORIZATION MATRIX
[7]   EXTENSION OF THE ONE-DIMENSIONAL SCATTERING-THEORY, AND AMBIGUITIES [J].
DEGASPERIS, A ;
SABATIER, PC .
INVERSE PROBLEMS, 1987, 3 (01) :73-109
[8]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[9]  
Faddeev LD., 1964, AM MATH SOC TRANSL, V2, P139
[10]  
Gohberg I, 1960, AM MATH SOC TRANSL, V14, P217, DOI DOI 10.1090/TRANS2/014/09