QUADRATICALLY CONSTRAINED LEAST-SQUARES AND QUADRATIC PROBLEMS

被引:141
作者
GOLUB, GH [1 ]
VONMATT, U [1 ]
机构
[1] SWISS FED INST TECHNOL,INST WISSENSCH RECHNEN,CH-8092 ZURICH,SWITZERLAND
关键词
D O I
10.1007/BF01385796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following problem: Compute a vector x such that parallel-to Ax - b parallel-to 2 = min, subject to the constraint parallel-to x parallel-to 2 = alpha. A new approach to this problem based on Gauss quadrature is given. The method is especially well suited when the dimensions of A are large and the matrix is sparse. It is also possible to extend this technique to a constrained quadratic form: For a symmetric matrix A we consider the minimization of x(T)Ax - 2b(T)x subject to the constraint parallel-to x parallel-to 2 = alpha. Some numerical examples are given.
引用
收藏
页码:561 / 580
页数:20
相关论文
共 19 条
[1]  
DAHLQUIST G, 1979, P WORKSHOP SEMIINFIN, P154
[2]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[3]  
GANDER W, 1981, NUMER MATH, V36, P291, DOI 10.1007/BF01396656
[4]   A CONSTRAINED EIGENVALUE PROBLEM [J].
GANDER, W ;
GOLUB, GH ;
VONMATT, U .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :815-839
[5]  
GOLUB G. H., 1965, SIAM J NUMER ANAL, V2, P205, DOI [10.1137/0702016, DOI 10.1137/0702016]
[6]  
Golub G.H., 1996, MATH GAZ, VThird
[7]  
GOLUB GH, 1973, SIAM REV, V15, P318, DOI 10.1137/1015032
[8]   SOME HISTORY OF THE CONJUGATE-GRADIENT AND LANCZOS ALGORITHMS - 1948-1976 [J].
GOLUB, GH ;
OLEARY, DP .
SIAM REVIEW, 1989, 31 (01) :50-102
[9]   CALCULATION OF GAUSS QUADRATURE RULES [J].
GOLUB, GH ;
WELSCH, JH .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :221-&
[10]  
GOLUB GH, 1974, J MATH, V4, P207