QUADRATICALLY CONSTRAINED LEAST-SQUARES AND QUADRATIC PROBLEMS

被引:141
作者
GOLUB, GH [1 ]
VONMATT, U [1 ]
机构
[1] SWISS FED INST TECHNOL,INST WISSENSCH RECHNEN,CH-8092 ZURICH,SWITZERLAND
关键词
D O I
10.1007/BF01385796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following problem: Compute a vector x such that parallel-to Ax - b parallel-to 2 = min, subject to the constraint parallel-to x parallel-to 2 = alpha. A new approach to this problem based on Gauss quadrature is given. The method is especially well suited when the dimensions of A are large and the matrix is sparse. It is also possible to extend this technique to a constrained quadratic form: For a symmetric matrix A we consider the minimization of x(T)Ax - 2b(T)x subject to the constraint parallel-to x parallel-to 2 = alpha. Some numerical examples are given.
引用
收藏
页码:561 / 580
页数:20
相关论文
共 19 条
[11]  
Householder A.S., 1975, THEORY MATRICES NUME
[12]  
Karlin S., 1966, TCHEBYCHEFF SYSTEMS
[13]  
KYLOV VI, 1962, APPROXIMATE CALCULAT
[14]  
Lawson C. J., 1974, SOLVING LEAST SQUARE
[15]  
Paige C. C., 1972, Journal of the Institute of Mathematics and Its Applications, V10, P373
[16]   LSQR - AN ALGORITHM FOR SPARSE LINEAR-EQUATIONS AND SPARSE LEAST-SQUARES [J].
PAIGE, CC ;
SAUNDERS, MA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (01) :43-71
[17]   ALGORITHM-583 - LSQR - SPARSE LINEAR-EQUATIONS AND LEAST-SQUARES PROBLEMS [J].
PAIGE, CC ;
SAUNDERS, MA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (02) :195-209
[18]  
PARLETT B. N., 1980, SYMMETRIC EIGENVALUE, DOI DOI 10.1137/1.9781611971163
[19]   SMOOTHING BY SPLINE FUNCTIONS .2. [J].
REINSCH, CH .
NUMERISCHE MATHEMATIK, 1971, 16 (05) :451-&