METABOLISM OF THE RAFFINOSE FAMILY OLIGOSACCHARIDES IN LEAVES OF AJUGA-REPTANS L - COLD-ACCLIMATION, TRANSLOCATION, AND SINK TO SOURCE TRANSITION - DISCOVERY OF CHAIN ELONGATION ENZYME

被引:229
作者
BACHMANN, M [1 ]
MATILE, P [1 ]
KELLER, F [1 ]
机构
[1] UNIV ZURICH, INST PLANT BIOL, CH-8008 ZURICH, SWITZERLAND
关键词
D O I
10.1104/pp.105.4.1335
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ajuga reptans is a frost-hardy, perennial labiate that is known for its high content of raffinose family oligosaccharide(s) (RFO). Seasonal variations in soluble nonstructural carbohydrate levels in above-ground parts of Ajuga showed that the RFO were by far the most predominant components throughout the whole year. RFO were lowest in summer (75 mg/g fresh weight) and highest in fall/winter (200 mg/g fresh weight), whereas sucrose and starch were only minor components. Cold treatment (14 d at 10/3 degrees C, day/night) of plants that were precultivated under warm conditions (25 degrees C) lowered the temperature optimum of net photosynthesis from 16 degrees to 8 degrees C, decreased the maximum rate, and increased the total nonstructural carbohydrate content of leaves by a factor of about 10, mainly because of an increase of RFO. The degree of polymerization of the RFO increased sequentially up to at least 15. A novel, galactinol-independent galactosyltransferase enzyme was found, forming from two molecules of RFO, the next higher and lower degree of polymerization of RFO. The enzyme had a pH optimum of 4.5 to 5.0 and may be responsible for RFO chain elongation. RFO were the main carbohydrates translocated in the phloem, with stachyose being by far the most dominant form. Studies of carbon balance during leaf development revealed a transition point between import and export at approximately 25% maximal leaf area. RFO synthesis could be detected even before the commencement of export, suggesting the existence of a nonphloem-linked RFO pool even in very young leaves. Taken together, it seems that Ajuga leaves contain two pools of RFO metabolism, a pronounced long-term storage pool in the mesophyll, possibly also involved in frost resistance, and a transport pool in the phloem.
引用
收藏
页码:1335 / 1345
页数:11
相关论文
共 56 条
[41]  
Preiss J., 1980, The biochemistry of plants. A comprehensive treatise. Volume 3. Carbohydrates: structure and function., P371
[42]   RAFFINOSE SYNTHESIS IN CHLORELLA-VULGARIS CULTURES AFTER A COLD SHOCK [J].
SALERNO, GL ;
PONTIS, HG .
PLANT PHYSIOLOGY, 1989, 89 (02) :648-651
[43]   ARE SUCROSYL-OLIGOSACCHARIDES SYNTHESIZED IN MESOPHYLL PROTOPLASTS OF MATURE LEAVES OF CUCUMIS-MELO [J].
SCHMITZ, K ;
HOLTHAUS, U .
PLANTA, 1986, 169 (04) :529-535
[44]   OCCURENCE AND DISTRIBUTION OF GALACTINOL IN LEAVES OF HIGHER PLANTS [J].
SENSER, M ;
KANDLER, O .
PHYTOCHEMISTRY, 1967, 6 (11) :1533-&
[45]   PURIFICATION AND CHARACTERIZATION OF GALACTINOL SYNTHASE FROM MATURE ZUCCHINI SQUASH LEAVES [J].
SMITH, PT ;
KUO, TM ;
CRAWFORD, CG .
PLANT PHYSIOLOGY, 1991, 96 (03) :693-698
[46]  
Stitt M., 1987, Progress in Photosynthesis Research. Volume 3, P685
[47]   A COMPARISON OF METHODS FOR MEASURING TURGOR PRESSURES AND OSMOTIC PRESSURES OF CELLS OF RED BEET STORAGE TISSUE [J].
TOMOS, AD ;
LEIGH, RA ;
SHAW, CA ;
JONES, RGW .
JOURNAL OF EXPERIMENTAL BOTANY, 1984, 35 (160) :1675-1683
[48]  
TURGEON R, 1975, PLANTA, V123, P53, DOI 10.1007/BF00388060
[49]   LEAF DEVELOPMENT AND PHLOEM TRANSPORT IN CUCURBITA-PEPO - MATURATION OF MINOR VEINS [J].
TURGEON, R ;
WEBB, JA .
PLANTA, 1976, 129 (03) :265-269
[50]  
Turgeon R., 1991, RECENT ADV PHLOEM TR, P18