DISTRIBUTIONAL CONVERGENCE OF M-ESTIMATORS UNDER UNUSUAL RATES

被引:7
作者
ARCONES, MA [1 ]
机构
[1] UNIV UTAH,DEPT MATH,SALT LAKE CITY,UT 84112
基金
美国国家科学基金会;
关键词
M-ESTIMATOR; EMPIRICAL PROCESS; RATE OF CONVERGENCE; LP-MEDIAN;
D O I
10.1016/0167-7152(94)00013-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Usually the rate of convergence of M-estimators is n1/2. Kim and Pollard (1990) showed that several estimators have a rate of convergence n1/3. Here, we will see that other rates are also possible. This is applied to the study of the convergence of the L(p)-medians for 0 < p less-than-or-equal-to 1/2.
引用
收藏
页码:271 / 280
页数:10
相关论文
共 14 条
[1]   ON THE ARG MAX OF A GAUSSIAN PROCESS [J].
ARCONES, MA .
STATISTICS & PROBABILITY LETTERS, 1992, 15 (05) :373-374
[2]  
Dudley R. M., 1967, J FUNCT ANAL, V1, P290, DOI DOI 10.1016/0022-1236(67)90017-1
[3]  
Dudley R.M, 1984, LECT NOTES MATH, P1
[4]  
DUDLEY RM, 1985, LECT NOTES MATH, V1153, P141
[5]  
GINE E, 1986, LECT NOTES MATH, V1221, P1
[6]  
HOFFMANNJORGENS.J, 1992, FUNCTIONAL ANAL, V3, P5
[7]  
HUBER PJ, 1967, 5TH P BERK S MATH ST, V1, P221
[8]   CUBE ROOT ASYMPTOTICS [J].
KIM, JY ;
POLLARD, D .
ANNALS OF STATISTICS, 1990, 18 (01) :191-219
[9]  
KOLCINSKII VI, 1992, ASYMPOTIC PROPERTIES
[10]  
Ledoux M., 1991, PROBABILITY BANACH S