STRONG CONSISTENCY AND OTHER PROPERTIES OF THE SPECTRAL VARIANCE ESTIMATOR

被引:29
作者
DAMERDJI, H
机构
关键词
SIMULATION; STEADY-STATE OUTPUT ANALYSIS; SPECTRAL VARIANCE ESTIMATION; STRONG CONSISTENCY;
D O I
10.1287/mnsc.37.11.1424
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Consistent estimation of the variance parameter of a stochastic process allows construction, under certain conditions, of a confidence interval for the mean of the process. If the variance estimator is strongly consistent, fixed-width confidence interval construction is valid for large samples. It has long been known that the spectral variance estimator of steady-state simulation output analysis is consistent in the mean-square sense. Here, we provide strong consistency of this estimator, thereby justifying fixed-width confidence interval construction for the spectral method. A characterization of spectral density function estimators is also introduced. This characterization provides insight into the relation between spectral methods and overlapping batch means-type variance estimators. Finally, some of the mathematical conditions provide qualitative insight into the relation between the process correlation and certain parameters of spectral methods.
引用
收藏
页码:1424 / 1440
页数:17
相关论文
共 23 条
[11]  
GLYNN PW, 1982, 17 STANF U DEPT OP R
[12]  
GLYNN PW, 1989, ASYMPTOTIC VALIDITY
[13]   APPROXIMATION OF PARTIAL SUMS OF INDEPENDENT RVS, AND SAMPLE DF .2. [J].
KOMLOS, J ;
MAJOR, P ;
TUSNADY, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 34 (01) :33-58
[14]   APPROXIMATION OF PARTIAL SUMS OF INDEPENDENT RV-S, AND SAMPLE DFI [J].
KOMLOS, J ;
MAJOR, P ;
TUSNADY, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 32 (1-2) :111-131
[15]   APPROXIMATION OF PARTIAL SUMS OF INDEPENDENT RVS [J].
MAJOR, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 35 (03) :213-220
[16]  
Meketon M. S., 1984, 1984 Winter Simulation Conference Proceedings (Cat. No. 84CH2098-2), P227
[17]  
MEKETON MS, 1980, THESIS CORNELL U ITH
[18]   SPLITTING TECHNIQUE FOR HARRIS RECURRENT MARKOV-CHAINS [J].
NUMMELIN, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 43 (04) :309-318
[19]  
Philipp W., 1975, MEM AM MATH SOC, V161
[20]  
Priestley M. B., 1981, SPECTRAL ANAL TIME S