DETERMINANT FORMULAS OF QUASI-FINITE REPRESENTATION OF W1+INFINITY ALGEBRA AT LOWER LEVELS

被引:14
作者
AWATA, H
FUKUMA, M
MATSUO, Y
ODAKE, S
机构
[1] UNIV TOKYO,DEPT PHYS,TOKYO 113,JAPAN
[2] SHINSHU UNIV,FAC LIBERAL ARTS,DEPT PHYS,MATSUMOTO,NAGANO 390,JAPAN
关键词
D O I
10.1016/0370-2693(94)91262-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We calculate the Kac determinant for the quasi-finite representation of W1+infinity algebra up to level 8. It vanishes only when the central charge is integer. We give an algebraic construction of null states and propose the character formulae. The character of the verma module is related to free fields in three dimensions which has rather exotic modular properties.
引用
收藏
页码:336 / 344
页数:9
相关论文
共 18 条
[1]  
AWATA H, 1993, YITPK1049 PREPR
[2]   BOSONIC REALIZATION OF A UNIVERSAL W-ALGEBRA AND Z-INFINITY PARAFERMIONS [J].
BAKAS, I ;
KIRITSIS, E .
NUCLEAR PHYSICS B, 1990, 343 (01) :185-204
[3]   GRASSMANNIAN COSET MODELS AND UNITARY REPRESENTATIONS OF W-INFINITY [J].
BAKAS, I ;
KIRITSIS, E .
MODERN PHYSICS LETTERS A, 1990, 5 (25) :2039-2049
[4]   THE SUPER W-INFINITY ALGEBRA [J].
BERGSHOEFF, E ;
POPE, CN ;
ROMANS, LJ ;
SEZGIN, E ;
SHEN, X .
PHYSICS LETTERS B, 1990, 245 (3-4) :447-452
[5]   OPERATOR CONTENT AND MODULAR PROPERTIES OF HIGHER-DIMENSIONAL CONFORMAL FIELD-THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1991, 366 (03) :403-419
[6]  
DEBOER J, 1993, ITPSB9384
[7]   NONRELATIVISTIC FERMIONS, COADJOINT ORBITS OF W-INFINITY AND STRING FIELD-THEORY AT C = 1 [J].
DHAR, A ;
MANDAL, G ;
WADIA, SR .
MODERN PHYSICS LETTERS A, 1992, 7 (33) :3129-3145
[8]  
FRIEDAN D, 1985, PHYS LETT B, V151, P31
[9]   INFINITE DIMENSIONAL GRASSMANNIAN STRUCTURE OF 2-DIMENSIONAL QUANTUM-GRAVITY [J].
FUKUMA, M ;
KAWAI, H ;
NAKAYAMA, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 143 (02) :371-403
[10]   QUASIFINITE HIGHEST WEIGHT MODULES OVER THE LIE-ALGEBRA OF DIFFERENTIAL-OPERATORS ON THE CIRCLE [J].
KAC, V ;
RADUL, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :429-457