PERIODIC-ORBITS AS THE SKELETON OF CLASSICAL AND QUANTUM CHAOS

被引:137
作者
CVITANOVIC, P
机构
[1] Niels Bohr Institute, DK-2100 Copenhagen Ø
来源
PHYSICA D | 1991年 / 51卷 / 1-3期
关键词
D O I
10.1016/0167-2789(91)90227-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A description of a low-dimensional deterministic chaotic system in terms of unstable periodic orbits (cycles) is a powerful tool for theoretical and experimental analysis of both classical and quantum deterministic chaos, comparable to the familiar perturbation expansions for nearly integrable systems. The infinity of orbits characteristic of a chaotic dynamical system can be resummed and brought to a Selberg product form, dominated by the short cycles, and the eigenvalue spectrum of operators associated with the dynamical flow can then be evaluated in terms of unstable periodic orbits. Methods for implementing this computation for finite subshift dynamics are introduced.
引用
收藏
页码:138 / 151
页数:14
相关论文
共 51 条
  • [1] ON PERIODIC POINTS
    ARTIN, M
    MAZUR, B
    [J]. ANNALS OF MATHEMATICS, 1965, 81 (01) : 82 - &
  • [2] RECYCLING OF STRANGE SETS .1. CYCLE EXPANSIONS
    ARTUSO, R
    AURELL, E
    CVITANOVIC, P
    [J]. NONLINEARITY, 1990, 3 (02) : 325 - 359
  • [3] RECYCLING OF STRANGE SETS .2. APPLICATIONS
    ARTUSO, R
    AURELL, E
    CVITANOVIC, P
    [J]. NONLINEARITY, 1990, 3 (02) : 361 - 386
  • [4] AURELL E, UNPUB PHYS REV A
  • [5] Resonances for intermittent systems
    Baladi, V.
    Eckmann, J-P
    Ruelle, D.
    [J]. NONLINEARITY, 1989, 2 (01) : 119 - 135
  • [6] SOLUTION OF SCHRODINGER EQUATION IN TERMS OF CLASSICAL PATHS
    BALIAN, R
    BLOCH, C
    [J]. ANNALS OF PHYSICS, 1974, 85 (02) : 514 - 545
  • [7] SEMICLASSICAL APPROXIMATIONS IN WAVE MECHANICS
    BERRY, MV
    MOUNT, KE
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1972, 35 (04) : 315 - +
  • [8] DETERMINATION OF CORRELATION SPECTRA IN CHAOTIC SYSTEMS
    CHRISTIANSEN, F
    PALADIN, G
    RUGH, HH
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (17) : 2087 - 2090
  • [9] THE SPECTRUM OF THE PERIOD-DOUBLING OPERATOR IN TERMS OF CYCLES
    CHRISTIANSEN, F
    CVITANOVIC, P
    RUGH, HH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (14): : L713 - L717
  • [10] Collet P., 1980, ITERATED MAPS INTERV