EXACT FACE-ISOPERIMETRIC INEQUALITIES

被引:15
作者
BOLLOBAS, B
LEADER, I
机构
[1] UNIV CAMBRIDGE,DEPT PURE MATH & MATH STAT,CAMBRIDGE,ENGLAND
[2] LOUISIANA STATE UNIV,DEPT MATH,BATON ROUGE,LA 70803
关键词
D O I
10.1016/S0195-6698(13)80135-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A d-dimensional face of the grid [k]n = {0, ... , k−s1}n is a set of the form {X ∈ [k]n}:xi=a1..., xi =ad, where 1 ⩽ i1 < … < id ⩽ n and a1, … , ad ∈ [k]. The main aim of this note is to give a best possible upper bound for the number of d-dimensional faces contained in a subset of [k]n of given cardinality, and thereby to prove a conjecture of Bollobás and Radcliffe. © 1990, Academic Press Limited. All rights reserved.
引用
收藏
页码:335 / 340
页数:6
相关论文
共 7 条
[1]   MAXIMALLY CONNECTED ARRAYS ON N-CUBE [J].
BERNSTEIN, AJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1967, 15 (06) :1485-+
[2]   ISOPERIMETRIC-INEQUALITIES FOR FACES OF THE CUBE AND THE GRID [J].
BOLLOBAS, B ;
RADCLIFFE, AJ .
EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (04) :323-333
[3]  
Bollobas B., 1986, COMBINATORICA
[4]  
Harper L. H., 1966, J COMBIN THEORY, V1, P385, DOI DOI 10.1016/S0021-9800(66)80059-5
[5]  
HARPER LH, 1964, SIAM J APPL MATH, V12, P131, DOI DOI 10.1137/0112012
[6]  
HARPER LH, 1967, THEORY GRAPHS, P151
[7]   NOTE ON EDGES OF N-CUBE [J].
HART, S .
DISCRETE MATHEMATICS, 1976, 14 (02) :157-163