DERIVATION OF GEOMETRIC STIFFNESS MATRIX FOR FINITE-ELEMENT HYBRID DISPLACEMENT MODELS

被引:2
作者
BRANDT, K
机构
[1] Fachgebiet Leichtbau, Technische Hochschule Darmstadt
关键词
D O I
10.1016/0020-7683(78)90064-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The matrix power series expansion is used for deriving the static geometric stiffness and elastic stiffness matrix of a hybrid displacement model. No restrictions about the number of interpolation functions within the interior of the element are introduced. The generalized degrees-of-freedom are not defined on nodal points but in an abstract way on element boundaries. Plate bending problems are considered to demonstrate the method. © 1978.
引用
收藏
页码:53 / 65
页数:13
相关论文
共 16 条
[11]  
Kloppel K., 1960, BEULWERTE AUSGESTEIF
[12]  
LINK M, 1972, THESIS TH DAMSTADT
[13]   DERIVATION OF ELEMENT STIFFNESS MATRICES BY ASSUMED STRESS DISTRIBUTIONS [J].
PIAN, THH .
AIAA JOURNAL, 1964, 2 (07) :1333-1336
[14]  
Pian THH, 1968, INT J NUMER METHODS, V1, P3
[15]  
Tong P., 1974, International Journal of Solids and Structures, V10, P919, DOI 10.1016/0020-7683(74)90033-X
[16]  
TONG P, 1970, INT J NUMER METH ENG, V2, P73