THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM

被引:127
作者
CALVO, MP
SANZSERNA, JM
机构
关键词
SYMPLECTIC INTEGRATION; KEPLER PROBLEM; RUNGE-KUTTA-NYSTROM METHODS;
D O I
10.1137/0914057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors develop and test variable step symplectic Runge-Kutta-Nystrom algorithms for the integration of Hamiltonian systems of ordinary differential equations. Numerical experiments suggest that, for symplectic formulae, moving from constant to variable stepsizes results in a marked decrease in efficiency. On the other hand, symplectic formulae with constant stepsizes may outperform available standard (nonsymplectic) variable-step codes. For the model situation consisting in the long-time integration of the two-body problem, our experimental findings are backed by theoretical analysis.
引用
收藏
页码:936 / 952
页数:17
相关论文
共 22 条
  • [1] ABIA L, 1993, IN PRESS MATH COMPUT
  • [2] Arnold, 2013, MATH METHODS CLASSIC
  • [3] CALVO MP, 1992, BIT, V3, P131
  • [4] SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS
    CHANNELL, PJ
    SCOVEL, C
    [J]. NONLINEARITY, 1990, 3 (02) : 231 - 259
  • [5] FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS
    DORMAND, JR
    ELMIKKAWY, MEA
    PRINCE, PJ
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) : 235 - 250
  • [6] Dormand JR., 1980, J COMPUT APPL MATH, V6, P19, DOI [10.1016/0771-050X(80)90013-3, DOI 10.1016/0771-050X(80)90013-3]
  • [7] FENG K, 1986, J COMPUT MATH, V4, P279
  • [8] HAIRER E, 1987, SOLVING ORDINARY DIF, V1
  • [9] HERBST BM, 1992, QUAEST MATH, V15, P345
  • [10] Kinoshita H., 1991, CELESTIAL MECH, V50, P59