SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS

被引:346
作者
CHANNELL, PJ [1 ]
SCOVEL, C [1 ]
机构
[1] UNIV CALIF LOS ALAMOS SCI LAB, CTR NONLINEAR STUDIES, LOS ALAMOS, NM 87545 USA
关键词
D O I
10.1088/0951-7715/3/2/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors survey past work and present new algorithms to numerically integrate the trajectories of Hamiltonian dynamical systems. These algorithms exactly preserve the symplectic 2-form, i.e. they preserve all the Poincare invariants. The algorithms have been tested on a variety of examples and results are presented for the Fermi-Pasta-Ulam nonlinear string, the Henon-Heiles system, a four-vortex problem, and the geodesic flow on a manifold of constant negative curvature. In all cases the algorithms possess long-time stability and preserve global geometrical structures in phase space. © 1990 IOP Publishing Ltd.
引用
收藏
页码:231 / 259
页数:29
相关论文
共 34 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]  
[Anonymous], 1966, PERTURBATION THEORY
[3]  
[Anonymous], [No title captured]
[4]  
Anosov D.V., 1962, SOVIET MATH DOKL, V3, P1068
[5]   INTEGRABLE AND CHAOTIC MOTIONS OF 4-VORTICES .1. THE CASE OF IDENTICAL VORTICES [J].
AREF, H ;
POMPHREY, N .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 380 (1779) :359-387
[6]  
Arnold V.I., 1968, ERGODIC PROBLEMS CLA
[7]  
ARNOLD VI, 1974, MATH METHODS CLASSIC, P225
[8]  
BIRKHOFF G, 1950, C PUBLICATIONS AM MA, V9
[9]  
CHANNELL PJ, 1983, AT6 ATN839 LOS AL NA
[10]  
CHANNELL PJ, 1983, AT6 ATN8318 LOS AL N