SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS

被引:346
作者
CHANNELL, PJ [1 ]
SCOVEL, C [1 ]
机构
[1] UNIV CALIF LOS ALAMOS SCI LAB, CTR NONLINEAR STUDIES, LOS ALAMOS, NM 87545 USA
关键词
D O I
10.1088/0951-7715/3/2/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors survey past work and present new algorithms to numerically integrate the trajectories of Hamiltonian dynamical systems. These algorithms exactly preserve the symplectic 2-form, i.e. they preserve all the Poincare invariants. The algorithms have been tested on a variety of examples and results are presented for the Fermi-Pasta-Ulam nonlinear string, the Henon-Heiles system, a four-vortex problem, and the geodesic flow on a manifold of constant negative curvature. In all cases the algorithms possess long-time stability and preserve global geometrical structures in phase space. © 1990 IOP Publishing Ltd.
引用
收藏
页码:231 / 259
页数:29
相关论文
共 34 条
[21]   ON CONSTRUCTING FORMAL INTEGRALS OF A HAMILTONIAN SYSTEM NEAR AN EQUILIBRIUM POINT [J].
GUSTAVSON, FG .
ASTRONOMICAL JOURNAL, 1966, 71 (08) :670-+
[22]   APPLICABILITY OF 3 INTEGRAL OF MOTION - SOME NUMERICAL EXPERIMENTS [J].
HENON, M ;
HEILES, C .
ASTRONOMICAL JOURNAL, 1964, 69 (01) :73-&
[23]  
Landau L. D., 1960, MECHANICS
[24]  
LASLETT LJ, COMMUNICATION
[25]  
MARSDEN JE, 1988, UNPUB PHYS LETT A
[26]   SOME PROPERTIES OF THE DISCRETE HAMILTONIAN METHOD [J].
MENYUK, CR .
PHYSICA D, 1984, 11 (1-2) :109-129
[27]   TREE GRAPHS AND THE SOLUTION TO THE HAMILTON-JACOBI EQUATION [J].
MOLZAHN, FH ;
OSBORN, TA .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (01) :88-99
[28]  
Moser J, 1973, ANN MATH STUDIES, V77
[29]  
Neri F., 1987, LIE ALGEBRAS CANONIC
[30]   GEODESIC FLOWS ARE BERNOULLIAN [J].
ORNSTEIN, D ;
WEISS, B .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (02) :184-198