A GAUSSIAN FLUID MODEL

被引:13
作者
DEBICKI, K
ROLSKI, T
机构
[1] Mathematical Institute, University of Wrocław, Wrocław, 50-384
关键词
FLUID MODEL; BUFFER CONTENT; ATM PROTOCOL; LINEAR LOGARITHMIC UPPER BOUND; GAUSS-MARKOV FLUID MODEL; AR-GAUSSIAN FLUID MODEL;
D O I
10.1007/BF01245328
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A fluid model with infinite buffer is considered. The total net rate is a stationary Gaussian process with mean -c and covariance function R(t). Let Psi(x) be the probability that in steady state conditions the buffer content exceeds x. Under the condition integral(0)(infinity) t(2) \ R(t) \ dt < infinity we show that Psi admits a logarithmic linear upper bound, i.e. Psi(x) less than or equal to C exp[-gamma x]) o(exp[-gamma x]) and find gamma and C. Special cases are worked out when Ii is as in a Gauss-Markov or AR-Gaussian process.
引用
收藏
页码:433 / 452
页数:20
相关论文
共 22 条
[11]  
Karatzas I., 1988, BROWNIAN MOTION STOC, DOI 10.1007/978-1-4612-0949-2
[12]   HEAVY-TRAFFIC ANALYSIS OF A DATA-HANDLING SYSTEM WITH MANY SOURCES [J].
KNESSL, C ;
MORRISON, JA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (01) :187-213
[13]  
Kopocinski B., 1973, ZARYS TEORII ODNOWY
[14]  
Korn G., 1961, MATH HDB SCI ENG
[15]  
KULKARNI V, 1993, UNCORTR937 TECHN REP
[16]  
KULKARNI V, 1991, PROB ENG INF SCI, V8, P403
[17]   A STORAGE MODEL WITH SELF-SIMILAR INPUT [J].
NORROS, I .
QUEUEING SYSTEMS, 1994, 16 (3-4) :387-396
[18]  
Prabhu N.U., 1980, STOCHASTIC STORAGE P
[19]  
SIMONIAN A, 1991, SIAM J APPL MATH, V51, P823
[20]  
SIMONIAN A, 1991, SIAM J APPL MATH, V51, P1731