KINETIC FORMULATION OF THE ISENTROPIC GAS-DYNAMICS AND P-SYSTEMS

被引:295
作者
LIONS, PL
PERTHAME, B
TADMOR, E
机构
[1] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[2] UNIV PARIS 06,ANAL NUMER LAB,F-75252 PARIS 05,FRANCE
关键词
D O I
10.1007/BF02102014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the 2 x 2 hyperbolic system of isentropic gas dynamics, in both Eulerian or Lagrangian variables (also called the p-system). We show that they can be reformulated as a kinetic equation, using an additional kinetic variable. Such a formulation was first obtained by the authors in the case of multidimensional scalar conservation laws. A new phenomenon occurs here, namely that the advection velocity is now a combination of the macroscopic and kinetic velocities. Various applications are given: we recover the invariant regions, deduce new L(infinity) estimates using moments lemma and prove L(infinity) - w* stability for gamma greater-than-or-equal-to 3.
引用
收藏
页码:415 / 431
页数:17
相关论文
共 16 条
[1]  
CHEN GQ, 1990, MCSP1540590 U CHIC P
[2]   ESTIMATES FOR CONSERVATION-LAWS WITH LITTLE VISCOSITY [J].
DAFERMOS, CM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (02) :409-421
[3]   LP REGULARITY OF VELOCITY AVERAGES [J].
DIPERNA, RJ ;
LIONS, PL ;
MEYER, Y .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (3-4) :271-287
[4]   CONVERGENCE OF THE VISCOSITY METHOD FOR ISENTROPIC GASDYNAMICS [J].
DIPERNA, RJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (01) :1-30
[5]   CONVERGENCE OF APPROXIMATE SOLUTIONS TO CONSERVATION-LAWS [J].
DIPERNA, RJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1983, 82 (01) :27-70
[6]   REGULARITY OF THE MOMENTS OF THE SOLUTION OF A TRANSPORT-EQUATION [J].
GOLSE, F ;
LIONS, PL ;
PERTHAME, B ;
SENTIS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 76 (01) :110-125
[7]  
JAMES F, IN PRESS J MATH PURE
[8]  
LAX PD, 1973, CBMS NSF REGIONAL C, V11
[9]  
Lions P.L., 1994, J AM MATH SOC, V7, P169
[10]  
LIONS PL, 1991, CR ACAD SCI I-MATH, V312, P97