A CONSISTENT BAROCLINIC QUASI-GEOSTROPHIC OCEAN MODEL IN MULTIPLY CONNECTED OCEAN DOMAINS

被引:9
作者
OZSOY, E [1 ]
LOZANO, CJ [1 ]
ROBINSON, AR [1 ]
机构
[1] HARVARD UNIV, DEPT EARTH & PLANETARY SCI, CAMBRIDGE, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0378-4754(92)90096-Y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Harvard ocean baroclinic quasigeostrophic model is further extended to enable the treatment of multiply connected domains with arbitrary coastal boundary geometry. A set of sufficient quasigeostrophic boundary conditions at physical boundaries are determined by requiring consistency with a regular asymptotic expansion in the Rossby number of thc primitive equations. To take advantage of fast Helmholtz solvers in regular domains, the physical multiply connected domain is embedded in a regular grid, and boundary conditions are imposed by using a variation of the capacitance matrix method. The accuracy of the method is exhibited by comparison with exact solutions.
引用
收藏
页码:51 / 79
页数:29
相关论文
共 28 条
[21]   QUASIGEOSTROPHIC ENERGETICS OF OPEN OCEAN REGIONS [J].
PINARDI, N ;
ROBINSON, AR .
DYNAMICS OF ATMOSPHERES AND OCEANS, 1986, 10 (03) :185-219
[22]   THE HARVARD OPEN OCEAN MODEL - CALIBRATION AND APPLICATION TO DYNAMIC PROCESS, FORECASTING, AND DATA ASSIMILATION STUDIES [J].
ROBINSON, AR ;
WALSTAD, LJ .
APPLIED NUMERICAL MATHEMATICS, 1987, 3 (1-2) :89-131
[23]   THE EASTERN MEDITERRANEAN GENERAL-CIRCULATION - FEATURES, STRUCTURE AND VARIABILITY [J].
ROBINSON, AR ;
GOLNARAGHI, M ;
LESLIE, WG ;
ARTEGIANI, A ;
HECHT, A ;
LAZZONI, E ;
MICHELATO, A ;
SANSONE, E ;
THEOCHARIS, A ;
UNLUATA, U .
DYNAMICS OF ATMOSPHERES AND OCEANS, 1991, 15 (3-5) :215-240
[24]  
SHAPIRO R, 1971, J ATMOS SCI, V28, P523, DOI 10.1175/1520-0469(1971)028<0523:TUOLFA>2.0.CO
[25]  
2
[26]   VECTOR AND PARALLEL METHODS FOR THE DIRECT SOLUTION OF POISSONS-EQUATION [J].
SWARZTRAUBER, PN ;
SWEET, RA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 27 (1-2) :241-263
[27]   METHODS OF CYCLIC REDUCTION, FOURIER-ANALYSIS AND FACR ALGORITHM FOR DISCRETE SOLUTION OF POISSONS EQUATION ON A RECTANGLE [J].
SWARZTRAUBER, PN .
SIAM REVIEW, 1977, 19 (03) :490-501
[28]  
VICHNEVETSKY R, 1987, NUMERICAL FLUID DYNA, P89