DIAGNOSING CHAOS IN THE SPACE CIRCLE

被引:20
作者
WOLF, A
BESSOIR, T
机构
[1] Department of Physics, The Cooper Union, New York, NY 10003, Cooper Square
来源
PHYSICA D | 1991年 / 50卷 / 02期
关键词
D O I
10.1016/0167-2789(91)90178-C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Space Circle is a toy whose motion is chaotic. A modified version of the device with a tunable stress parameter exhibits a variety of periodic and chaotic states. We have derived and numerically solved the equations of motion for the system and find excellent agreement with experimental results. The problems with some widely used algorithms for diagnosing experimental chaos are discussed. For the Space Circle we find that estimates of the dominant Lyapunov exponent are more robust than estimates of the fractal dimension.
引用
收藏
页码:239 / 258
页数:20
相关论文
共 28 条
[21]  
Moon F. C., 1987, CHAOTIC VIBRATIONS I
[22]   GEOMETRY FROM A TIME-SERIES [J].
PACKARD, NH ;
CRUTCHFIELD, JP ;
FARMER, JD ;
SHAW, RS .
PHYSICAL REVIEW LETTERS, 1980, 45 (09) :712-716
[23]  
Takens F., 1981, DYNAMICAL SYSTEMS TU, V898, P366, DOI [10.1007/BFb0091924, 10.1007/BFB0091924, 10.1007/bfb0091924, DOI 10.1007/BFB0091924]
[24]  
Vastano J., 1986, DIMENSIONS ENTROPIES, P100
[25]  
Wilkinson JH., 1965, ALGEBRAIC EIGENVALUE
[26]   DETERMINING LYAPUNOV EXPONENTS FROM A TIME-SERIES [J].
WOLF, A ;
SWIFT, JB ;
SWINNEY, HL ;
VASTANO, JA .
PHYSICA D, 1985, 16 (03) :285-317
[27]  
WOLF A, 1986, DIMENSIONS ENTROPIES, P94
[28]  
Wolf A., 1986, NONLINEAR SCI THEORY, P273, DOI [10.1515/9781400858156.273, DOI 10.1515/9781400858156.273]