BOUNDED-INPUT BOUNDED-OUTPUT STABILIZATION OF NONLINEAR-SYSTEMS USING STATE DETECTORS

被引:12
作者
PAN, DJ [1 ]
HAN, ZZ [1 ]
ZHANG, ZJ [1 ]
机构
[1] SHANGHAI JIAO TONG UNIV,DEPT AUTOMAT CONTROL,SHANGHAI 200030,PEOPLES R CHINA
基金
中国国家自然科学基金;
关键词
NONLINEAR SYSTEMS; STABILITY; STATE DETECTORS; FEEDBACK CONTROL;
D O I
10.1016/0167-6911(93)90029-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to the study of relations between Lyapunov stabilization and bounded-input-bounded-output (BIBO) stabilization of nonlinear systems when the state is not available for measurement and various state detectors are employed for implementing feedback control. It is found that with some constraints imposed on the detectors, Lyapunov stabilization implies BIBO stabilization. A feedback control scheme for achieving BIBO stability is presented.
引用
收藏
页码:189 / 198
页数:10
相关论文
共 22 条
[1]   STABILIZATION OF A CLASS OF NONLINEAR-SYSTEMS BY A SMOOTH FEEDBACK-CONTROL [J].
AEYELS, D .
SYSTEMS & CONTROL LETTERS, 1985, 5 (05) :289-294
[2]   STABILIZATION WITH RELAXED CONTROLS [J].
ARTSTEIN, Z .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (11) :1163-1173
[3]  
Brockett R. W., 1983, DIFFERENTIAL GEOMETR, V27, P181
[4]   LOCAL STABILIZATION OF MINIMUM-PHASE NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
ISIDORI, A .
SYSTEMS & CONTROL LETTERS, 1988, 11 (01) :9-17
[5]  
Desoer C. A., 1988, Proceedings of the 27th IEEE Conference on Decision and Control (IEEE Cat. No.88CH2531-2), P455, DOI 10.1109/CDC.1988.194351
[6]  
Hahn W., 1967, STABILITY MOTION
[7]   STABILIZATION OF NONLINEAR-SYSTEMS [J].
HAMMER, J .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 44 (05) :1349-1381
[8]  
HAN ZZ, 1985, UNPUB GLOBAL STABILI
[9]  
Isidori A., 1985, NONLINEAR CONTROL SY
[10]   CONTROLLABILITY AND STABILITY [J].
JURDJEVIC, V ;
QUINN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 28 (03) :381-389