A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS

被引:433
作者
HANKE, M
NEUBAUER, A
SCHERZER, O
机构
[1] Institut für Mathematik, Johannes-Kepler-Universität, Linz
关键词
D O I
10.1007/s002110050158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the Landweber iteration is a stable method for solving nonlinear ill-posed problems. For perturbed data with noise level delta we propose a stopping rule that yields the convergence rate O(delta(1/2)) under appropriate conditions. We illustrate these conditions for a few examples.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 25 条
[1]  
Bakushinskii A. B., 1989, ITERATIVE METHODS SO
[2]  
BAKUSHINSKII AB, 1992, ILL-POSED PROBLEMS IN NATURAL SCIENCES, P13
[3]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[4]  
COLONIUS F, 1986, J REINE ANGEW MATH, V370, P1
[5]  
Defrise M., 1987, INVERSE PROBLEMS INT, P261
[6]   ITERATION METHODS FOR CONVEXLY CONSTRAINED ILL-POSED PROBLEMS IN HILBERT-SPACE [J].
EICKE, B .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1992, 13 (5-6) :413-429
[7]  
Engl H.W., 1993, SURV MATH IND, V3, P71
[8]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[9]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[10]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&