A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS

被引:433
作者
HANKE, M
NEUBAUER, A
SCHERZER, O
机构
[1] Institut für Mathematik, Johannes-Kepler-Universität, Linz
关键词
D O I
10.1007/s002110050158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the Landweber iteration is a stable method for solving nonlinear ill-posed problems. For perturbed data with noise level delta we propose a stopping rule that yields the convergence rate O(delta(1/2)) under appropriate conditions. We illustrate these conditions for a few examples.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 25 条
[21]   OPTIMAL A POSTERIORI PARAMETER CHOICE FOR TIKHONOV REGULARIZATION FOR SOLVING NONLINEAR III-POSED PROBLEMS [J].
SCHERZER, O ;
ENGL, HW ;
KUNISCH, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (06) :1796-1838
[22]   WELL POSEDNESS AND CONVERGENCE OF SOME REGULARISATION METHODS FOR NON-LINEAR ILL POSED PROBLEMS [J].
SEIDMAN, TI ;
VOGEL, CR .
INVERSE PROBLEMS, 1989, 5 (02) :227-238
[23]  
VAINIKKO GM, 1986, ITERATION PROCEDURES
[24]  
VAINIKKO GM, 1980, AUTOMAT REM CONTR, V40, P356
[25]   ITERATIVE METHODS FOR SOLVING ILL-POSED PROBLEMS WITH A PRIORI INFORMATION IN HILBERT-SPACES [J].
VASIN, VV .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1988, 28 (04) :6-13