MAX-INFINITELY DIVISIBLE AND MAX-STABLE SAMPLE CONTINUOUS-PROCESSES

被引:69
作者
GINE, E
HAHN, MG
VATAN, P
机构
[1] TUFTS UNIV,DEPT MATH,MEDFORD,MA 02155
[2] MIT,CAMBRIDGE,MA 02139
关键词
D O I
10.1007/BF01198427
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conditions for a process ζ on a compact metric space S to be simultaneously max-infinitely divisible and sample continuous are obtained. Although they fall short of a complete characterization of such processes, these conditions yield complete descriptions of the sample continuous non-degenerate max-stable processes on S and of the infinitely divisible non-void random compact subsets of a Banach space under the operation of convex hull of unions. © 1990 Springer-Verlag.
引用
收藏
页码:139 / 165
页数:27
相关论文
共 25 条
[1]  
ANDERSEN NT, 1985, MAT I AARHUS U PUB S, V36
[2]  
Araujo A, 1980, CENTRAL LIMIT THEORE
[3]   MAX-INFINITE DIVISIBILITY [J].
BALKEMA, AA ;
RESNICK, SI .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (02) :309-319
[4]  
Berg C., 1984, HARMONIC ANAL SEMIGR
[5]   EXTREME VALUES OF INDEPENDENT STOCHASTIC-PROCESSES [J].
BROWN, BM ;
RESNICK, SI .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (04) :732-739
[6]  
de Haan L, 1970, MATH CTR TRACTS, V32
[7]  
DEHAAN L, 1977, Z WAHRSCHEINLICHKEIT, V40, P317
[8]  
DEHAAN L, 1984, ANN PROBAB, V12, P1194
[9]  
FISHER RA, 1928, P CAMB PHILOS SOC, V50, P383
[10]   CHARACTERIZATION AND DOMAINS OF ATTRACTION OF P-STABLE RANDOM COMPACT-SETS [J].
GINE, E ;
HAHN, MG .
ANNALS OF PROBABILITY, 1985, 13 (02) :447-468