MAX-INFINITELY DIVISIBLE AND MAX-STABLE SAMPLE CONTINUOUS-PROCESSES

被引:69
作者
GINE, E
HAHN, MG
VATAN, P
机构
[1] TUFTS UNIV,DEPT MATH,MEDFORD,MA 02155
[2] MIT,CAMBRIDGE,MA 02139
关键词
D O I
10.1007/BF01198427
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conditions for a process ζ on a compact metric space S to be simultaneously max-infinitely divisible and sample continuous are obtained. Although they fall short of a complete characterization of such processes, these conditions yield complete descriptions of the sample continuous non-degenerate max-stable processes on S and of the infinitely divisible non-void random compact subsets of a Banach space under the operation of convex hull of unions. © 1990 Springer-Verlag.
引用
收藏
页码:139 / 165
页数:27
相关论文
共 25 条
[11]   The limited distribution of the maximum term of a random series [J].
Gnedenko, B .
ANNALS OF MATHEMATICS, 1943, 44 :423-453
[12]  
Halmos P.R., 1950, MEASURE THEORY
[13]  
HORMANDER L, 1954, ARK MAT, V3, P181, DOI 10.1007/BF02589354
[14]  
KARR A, 1986, POINT PROCESSES STAT
[15]   CHARACTERIZATIONS OF ALMOST SURELY CONTINUOUS P-STABLE RANDOM FOURIER-SERIES AND STRONGLY STATIONARY-PROCESSES [J].
MARCUS, MB ;
PISIER, G .
ACTA MATHEMATICA, 1984, 152 (3-4) :245-301
[16]  
MATHERON G., 1975, RANDOM SETS INTEGRAL
[17]   CONVERGENCE AND EXISTENCE OF RANDOM SET DISTRIBUTIONS [J].
NORBERG, T .
ANNALS OF PROBABILITY, 1984, 12 (03) :726-732
[18]   RANDOM CAPACITIES AND THEIR DISTRIBUTIONS [J].
NORBERG, T .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 73 (02) :281-297
[19]  
NORBERG T, 1986, 148 U N CAR CTR STOC
[20]  
PICKANDS J, 1981, 43RD P SESS INT STAT, V2, P859